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The object of the research reported herein was to develop a

general mathematical model and solution methodologies for

analyzing the structural response of thin, metallic shell

structures under large transient, cyclic, or static

thermomechanical loads. Among the system responses associated

with these loads and conditions are thermal buckling, creep

buckling, and ratcheting. Thus geometric and material

nonlinearities (of high order) can be anticipated and must be

considered in developing the mathematical model. The methodology

is demonstrated through different problems of extension, shear

and of planar curved beam. Moreover, importance of the inclusion

of large strains is clearly demonstrated, through the chosen

applications.
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I. INTRODUCTION

1.1 Background

The prediction of inelastic behavior of metallic materials at elevated

temperatures has increased in importance in recent years. The operating

conditions within the hot section of a rocket motor or a modern gas turbine

engine present an extremely harsh thermo-mechanlal environment. Large

thermal transients are induced each time the engine is started or shut down.

Additional thermal transients from an elevated ambient occur, whenever the

engine power level is adjusted to meet flight requirements. The structural

elements employed to construct such hot sections, as well as any engine

component located therein, must be capable of withstanding such extreme

conditions. Failure of a component would, due to the critical nature of

the hot section, lead to an immediate and catastrophic loss in power and

thus cannot be tolerated. Consequently, assuring satisfactory long term

performance for such components is a major concern for the designer.

Traditionally, this requirement for long term durability has been a

more significant concern for gas turbine engines rather than rocket motors.

However, with the advent of reusable space vehicles, such as the Space

Shuttle, the requirement to accurately predict future performance following

repeated elevated temperature operations must now be extended to includ the

more extreme rocket motor application. These operating blades to severe

thermal transients that result in large inelastic strains, and several

types of behavior must be considered. The elevated temperatures can lead

to thermal buckling and, in addition, creep can be expected to occur.

Thus, a combination of thermal-creep buckling behavior leading to large

deflections can be anticipated. Because of the cyclic character of the

mechanical and thermal loads, progressive growth or ratchetting effects



must also be considered. Thus, geometric and material nonlinearities (of

high orders) can be anticipated and must be considered in the mathematical

model.

Consequently, the industry is concerned with the behavior of thin

shell llke structural elements subjected to severe time dependent

thermo-mechanical loading. Such thin elements, including beams, rings,

arches, plates and shells, are presenting generic types of components,

which might be located within or adjacent to the hot section of a rocket or

a gas turbine engine.

The experience in the gas turbine engine industry indicates, however,

that existing analytic tools are not sufficiently reliable to accomplish

this task. State of the art methods for predicting hot section component

behavior are generally not sufficiently accurate to perform extended use

eval uat Ions.

Under this kind of severe loading condltons, the structural behavior

is highly nonlinear due to the combined action of geometrical and physical

nonlinearities. On one side, finite deformation in a stressed structure

introduces nonlinear geometric effects. On the other side, physical

nonlinearities arise even in small strain regimes, whereby inelastic

phenomena play a particularly important role. From a theoretical

standpoint, nonlinear constitutive equations should be applied only in

connection with nonlinear transformation measures (implying both

deformation and rotations). However, in almost all of the works in this

area, the two identified sources of nonlinearities are always separated.

This separation yields, at one end of the spectrum, problem of large

response, while at the other end, problems of viscous and/or non-isothermal

behavior in the presence of small strain.



Because of the nature of the causes, special care is needed in the

selection or development of a constitutive law that includes tme and

temperature effects. Although there exists a sizeable body of literature

on phenomenologlcal consltutive equations for the rate- and

temperature-dependent plastic-deformation of metallic materials, to date

rational and thermodynamically consistent elastic-thermoviscoplastlc

constitutive relations capable of incorporating the effects of large

strains and rotations have not been demonstrated.

Constitutive models for small strain in engineering literature may

generally be grouped into three categories: classical plasticity,

nonlinear viscoelasticity, and theories based on mlcrostructural phenomena.

Each group can be further separated into "unified" and "uncoupled"

theories, where the two differ in their approach to the treatment of rate -

independent and rate-dependent inelastic deformation. The uncoupled

theories decompose the inelastic strain rate into a tlme-lndependent

plastic strain rate and a timedependent creep rate with independent

constitutive relations describing plastic and creep behavior. Such

uncoupling of the strain components provides for simpler theories to be

developed but precludes any creep-plasticity interaction. Recognizing that

cyclic plastlclty,creep and recovery are not independent phenomena but

rather are very interdependent, a number of "unified" models for inherently

tlme-dependent nonelastic deformation have been developed recently.

Classical Incremental plasticity theories are macrophenomenological

because they base the derivation of state variables purely on experimental

results without direct reference to the microstructure of the material.

Most incremental plasticity theories have four major components: (I) a

stress-elastic strain relations, (2) a yield function describing the onset



of plastic deformation, (3) a hardening rule which prescribes the

straln-hardenlng of the material and the modification of the yield surface

during plastic flow, and (4) a flow rule which defines the componentsof

strain that are plastic or nonrecoverable. Research in this area is

voluminous. For example, Zlenklewlcz and CormeauI developed a rate

dependent unified theory which allows for nonassoclatlve plasticity and

strain softening, but does not model the Bauschlnger effect or temperature

dependence. Extensions of classical plasticity to model both rate and

temperature effects were presented recently by Allen and Halsler 2, Halsler

and Cronenworth3, and Yamadaand Sakural 4.

In the nonlinear viscoelastic approach, the constitutive relation is

expressed as a single integral or convoluted form. This type of

constitutive model employs the thermodynamic laws along with physical

constraints to complete the formulation. A detailed review of several

existing theories is presented by Walker5. Walker's 5 theory is based on a

unified vlscoplastlc integral developed by modifying the constitutive

relations for a linear three paramter viscoelastic solid. The theory

contains clearly defined material parameters, a rate dependent equilibrium

stress, and a proposed multlaxlal model. An important shortcoming of

Walker's theory is its failure to model transient temperature conditions.

Many other nonlinear viscoelastic theories have been proposed including

those by Cernocky and Krempl 6, Valanis 7 and Chabache 8.

The mlcrophenomenologlcal theories attempt to represent the response

of polycrystalllne materials in terms of various mlcromechanlsms of

deformation and failure. Various dislocation theories have been developed

to predict plastic deformation in terms of dislocation interaction, sllp,

glide, density, etc. Most of the material models developed, to date,

4



depend primarily on the numberof state variables used and their growth or

evolutionary laws. Many of the recent "unified" microphenomenological

theories have been discussed and evaluated by Walker9, and Chanet. al I0.

One example of a microphysically based constitutive law is an

elastic-viscoplastic theory based on two internal state variables as

proposed by Bodner, et al. 1;. These authors,demonstrate the ability of the

constitutive equations to represent the principal features of cyclic

loading behavior including softening upon stress reversal, cyclic hardening

or softening, cyclic saturation, cyclic relaxation, and cyclic creep. One

limitation of the formulation though is that the computed stress_strain

curves are independent of the strain amplitude and therefore too "flat" or

"square".

Miller 12 has reported research on the modelling of cyclic plasticity

with "unified" constitutive equations. He also recognizes the shortcomings

of many theories in predicting hysteresis loops, which are oversqaure in

comparison to observed experimental behavior. Improvement is accomplished

by making the kinematic work-hardening coefficient depend on the back

stress and the sign of the nonelastic strain term. Theories that are

similar in format to Miller's have been proposed by Krleg, Swearengen and

Rhode13 and by Hart 14. The models use two internal state variables to

reflect current mlcrostructure state and are based upon models for

dislocation processes in pure metals. All these constitutive theories were

formulated without the use of a yield criterion. Since these models do not

contain a completely elastic regime, the function that describes the

inelastic strain rate should be such that the inelastic strain rate is very

small for low stress levels. Theories with a yield function and a full

elastic regime have been developed for the case of isotropic hardening by

5



Roblnson15, and by Lee and Zavrel 16 for both isotropic and directional

hardening.

As previously noted, the quantities utilized In the small strain

theory of vlscoplastlclty (stress, strain, stress rate, and strain rate)

are defined only wlthin the assumption of "small strains". Yet the precise

definition of what constitutes "small strain" Is always left unstated.

Whether or not the stresses for a given case are "small" cannot be

determined a priori by geometric considerations. In general, one cannot

know In advance whether for a given loading of a material the "small

straln" assumption (always left undefined) wlll hold or not. The questlon

of whether the small-straln approximations are valid Is always avoided In

the "small strain" literature. Furthermore, as HIll 17 points out, the

really typical plastic problems involve changes In geometry that cannot be

disregarded. In manycases, for example, It Is sufficient to take Into

account finite plastlc strains and small elastic strains or vlce versa.

From the theoretical viewpoint It ls desirable in all cases to have a

theory which intrinsically allows for both the elastlc and plastlc stralns

to be large. Sucha theory of course, must reduce to the earlier mentioned

special cases, as limiting cases. Furthermore, such theories provide a

check for those which are obtained by generalizing small strain theories.

The mathematical theories of deformation and flow of matter deal

essentially wlth the gross properties of a medium. Heat and mechanical

work are considered as additional causes for a change of the state of the

medium. The resulting phenomena in any partlcuiar material are not

unrelated. Therefore, a thermodynamlcal treatment of the foundation of the

theory of flow and deformation is appropriate, and indeed the obvious

approach. Two very different maln approaches to a thermodynamic theory of



a continuum can be identified. These differ from each other in the

fundamental postulates upon which the theories are based. An essential

controversy (a good survey of this controversy is given in Ref. 18) can be

traced through the whole discussion of the thermodynamic aspects of

continuum mechanics. Noneof these approaches is concerned with the atomic

structure of the material. They, therefore, represent purely

phenomenologlcal approximations. Both theories are characterized by the

samefundamental requirement that the results should be obtained without

having recourse to statical or kinetic methods.

Within each of these approaches there are two distinct methods of

describing history and dissipative effects: the functional theory 19, in

which all dependent variables are assumed to depend on the entire history

of the independent variables, and the internal variable approach 20, wherein

history dependence is postulated to appear implicitly in a set of internal

variables. For experimental as well as analytical reasons 21,22 the use of

internal variables in modeling inelastic solids is gaining widespread

usage, in current research. The main differences among the various modern

theories lle in the choice of these internal variables.

The predictive value of an elastic- vlscoplastic material model for

non-lsothermal, large deformation analyses depends therefore on three basic

el ement s:

a) the nonlinear kinematic description of the elastic-plastic deformation.

b) thermodynamic considerations

c) the choice of external and Internal thermodynamic variables.

as well as on their interactions.

The problem of v_scoplastlc deformations in shells has been treated at

several levels of approximation and generality.



The simplest approaches* are based on the assumption of infinitesimal

displacement gradients (which implies infinitesmal strains) and a material

model of stationary creep, sometimes with an approximate inclusion of

primary creep.

A more general analysis utilizes shell kinematics for moderately large

displacement gradients (at least some of them), infinitesimal strains, and

material models of stationary or simple non-stationary creep*. Ths type of

assumption is capable of solving problems of creep buckling 24, and it does

reproduce the sometimes stiffening effect of the interaction between the

normal forces and the normal deflection. Extension of these kind of

formulation with a viscoplastic material model is presented in Refs. 25,

26, & 27. The use of numerical methods 28 makes possile the solution for

many non-trivial types of structures.

The problems of large strains, which arise in the analysis of large

creep or thermal deformation of shells, have not been treated at all in a

general manner. Recognizing that finite strain effects are present in

these problems, reliable prediction demand tht such effects be included

rationally and properly in the analysis. In addition to the necessary

basic klnemtical and dynamical equations of the shell theory, such an

analysis must incorporate a correctly invariant formulation of the material

equations and requires an evaluation of the strain-rate tensors through the

thickness of the shell. Such an analysis cannot be found in explicit form,

at least in the readily accessible engineering literature.

Several authors have developed mathematical description of the

kinemation of the three dimensional deformation of elastic or

A comprehensive survey of these works is given in Ref. 23.



viscoelastoplastlc materials29,30. However, it is not clear howto best

select to reference space and configuration for the stress tensor, bearing

in mind the rheologles of realistic materials. Although an intrinsic

relation, which satisfies material objectivity can be used31,32, the

choice is not unique (see for exampleRefs. 30, 33, 34).

1.2 Purpose of the Present Study

The objectives of the present research are to develop a general

mathematical model and solution methodologies for analyzing the structural

response of thin, metallic shell-type structures under large transient,

cyclic or static thermomechanlcal loads. Among the system responses, which

are associated with these loads and conditions, are thermal buckling, creep

buckling and ratchettlng. T.hus, geometric and material type nonlinearities

(of high order) can be anticipated and must be considered in the

development of the mathematical model. Futhermore, this must also be

accommodated in the solution procedures. The results obtained from this

analysis are compared with the available experimental data, as well as with

results obtained from "small strain" analyses in order to ascertain the

range of validity of the "small strain" approximation.

1.3 Synopsis of the Present Study

Secton 2 contains the concepts that are necessary for the development

of a general "finite strain" theory for thin bodies with path-dependent,

time-dependent and temperature-dependent .material nonllnearlties.

A complete true abinito rate theory of kinematics and kinetics for

continuum, without any restriction on the magnitude of the strains or the

deformations is formulated. The time dependence and large strain behavior

are incorporated through the introduction of the time rates of the metric

and curvature in two coordinate systems; a fixed (spatial), and a convected

9



(material) one. The details of the reported developmentsare carried out

by using tensor analysis. Special attention is directed to coordinate

transformations as applied to continuum mechanics. Consideration of the

kinematics of space (i.e., the intrinsic rates of change as they are

observed by a geometer within a closed neighborhood of material particles)

focused on the distinction betweena fixed (spatial) coordinate system and

a convected (material) coordinate system. Moreover, the rates of changeof

tensors are presented in both systems, taking the various tensor and

kinematical effects into account. The relations between the time

derivative and the covarlant derivatives (gradient) are developed, and

these illustrate the possibilities of curved space or motion.

The" time derivatives are applied to the basic laws of continuum

mechanics and thermodynamics to generate the equations of equilibrium rate

and those for the eompatiblity of the deformation rates. Finally, the

principles of the rate of virtual power and the rate of conservation of

energy are introduced and employed, and these should provide a basis the

development of computational methods.

The general form of the constitutive equations, employed in the

analysis, is presented in Section 3.

The metric tensor (time rate of change) in the convected material

coordinate system is linearly decomposed into elastic and plastic parts.

In this formulation, a yield function is assumed, which is dependent on the

rate of change of stress, metric, temperature, and a set of internal

variables. Moreover, a hypo-elastic law is chosen to describe the

thermo-elastic part of the deformation.

A time and temperature dependent viscoplasticity model is formulated,

in this convected material system, to account for finite strains and

i0



rotations. The history and temperature dependence are incorporated through

the introduction of internal variables. The choice of these variables, as

well as their evolution, Is motivated by phenomenologlcal

thermodynamic considerations. The nonlsothermal elastlc-vlscoplastic

deformation process is described completely by "thermodynamic state"

equa t ions.

Many pitfalls in the analyses of various investigations are indicated.

A very important point that has been consistently neglected by many

analysts_and computer programs is to indicate precisely in what form the
i

constitutive properties have to be lnput. Most Investlgators after an

elaborate treatment of a general theory in tensor notation, leave undefined

the constitutive equations to be measured In the laboratory. In Subsection

4.1, the homogeneous unlaxlal Irrotatlonai deformation of a continuum is

treated, wlth at least two purposes in mind: (I) to give a clear physical

understanding of the quantities involved in the analysis (whlch is not

possible to obtain through the tensor index notation) and (2) since the

most common material test is the unlaxial test, to identify precisely what

are the quantltles that one should measure In the laboratory (as well as

how to express these data to conform with the constitutive equations used

in the theoretical material model).

In Sections 5 and 6, the previous developments of Sections 2 and 3 are

utilized to derive consistent kinematic, dynamic and constitutive

equations, which are valid for flnlte strains and rotations of thln bodies.

Some of these equations seem to be original (have not been found In the

literature by the authors).

Flve different shell theories (approximations) in rate form, starting

with the simple Kirchhoff-Love theory and finishing with a complete

11



unrestricted one, are considered in Section 5. Three different curved and

straight beam problems are studied in Section 6. The results from the

"finite strain" analysis are compared with the results from the

"small strain" theory to ascertain the range of validity of "small strain"

theory for the present type of problems. Moreover, the time and

temperature dependence and effects of the new constitutive relations are

compared with the results of the classical formulations of

thermo- el as to- plas ticity.

The future research is summerized in Section 7.

12



2. GENERAL FORMULATION; THREE-DIMENSIONAL CONTINUUM

2.1 Introduction

The inherent difficulties associated with nonlinear continuum

mechanics, along with theoretical considerations, lead to the formulation

of incremental constitutive equations. Thus, the rate concepts arise and

reformulation of the basic laws with the aid of the rate approach becomes

essential. As usage of tensor operators is a common practice in the scope

of continuum mechanics, their rates need to be formulated rigorously.

It is obvious that the subtleties of tensor analysis and of the rate

concepts, distinguishing between the spatial and the material descriptions

of the continuum, require careful examination and rigorous formulations;

otherwise, inaccuracies are likely to be encountered, especially in

conjunction with the derivation of the rate of a gradient.

The objectives of this section are then the systematic formulation of

the rates of tensor operators, yielding integral and differential rate

theorems. Resultant theorems are definitely meaningful. Moreover, the

consistent considerations throughout the process of formulation are vital

ingredients for gaining insight, in anticipation of further developments,

when dealing with special structural elements.

Treatises that have influenced this wrlte-up are attributed to

Truesdell et ai.35-37, Sedov38-40, Green et al. 41-43, Sokolnikoff 44 and

McConnel145.

The tasks of the reported developments are carried out with the aid

of tensor analysis. Tensor definitions, notations, theorems, corollaries,

etc. are rephrased in Subsection 2.2. This brief refresher on tensor

13



analysis follows Sokolnikoff 44 and McConnel145. Special attention is drawn

to transformation of coordinates, bearing in mind the applications of

continuum mechanics.

Subsection 2.3 is dedicated to the kinematics of space, i.e., the

intrinsic rates of change, as they are observed by a geometer within the

closed neighborhood of material particles. The distinction between

coordinate systems (essential cornerstone of tensor analysis) is

specialized to the one between the fixed (spatial) system and the convected

(material) one. Only the Lagrangian description is discussed because the

Eulerian one does not seem adequate for solids. The geometric rates are

examined in detail, as long as the geometer, whose explorations focus upon

the material system, is capable of observing. This subject has been

thoroughly elaborated upon by Durban and Baruch 46, whose discipline follows

the original ones of Gibbs 47 or Bloch 48, and by Mendelssohn and Baruch 49

whose discipline in turn follows the work of Aris 50. The latter two

illuminate the facets of the various time derivatives (namely, rates of

change) wlth the help of the conventional tensor notation. This approach

will be followed, herein.

Subsection 2.4 consists of the development of the rates of tensor

components. Numerous publications (including textbooks), especially those

oriented toward fluid mechanics, have dealt with the problem of rate of

change of tensor components. Since the present work is concerned with

solid mechanics, the various derivatives are going to be associated with

material points and not with the spatial ones. Unlike the conventions of

fluid mechanics (cf. Aris 50) and following the ideas summarized by Durban

and Baruch 46, and by Mendelssohn and Baruch 49, rates of change must be

distinguished by the location of the observer.

14



The intrinsic description iS insufficient, as somebasic laws refer

to rates, which are observed within the fixed system. The partial time

derivative and the total derivatives, although defined with respect to the

fixed system, are formulated in the material system in a manner that

manifests their tensor character. Besides, rigorous formulation of the

time derivative of a covarlant derivative (gradient) enables the

classification of problems with regard to the curvature of space or motion.

The time derivatives are applied to the basic laws of continuum mechanics,

to obtain the equtlons of equilibrium rate and the compatibility of

deformation rates. Finally, the principle of the rate of virtual power is

deri red.

2.2 Geometry and Statics of the Continuum

Let the n-dlmenslonal space be decrlbed by two systems of coordinates

x i and us (Fig. 2.1)

XL

Fig. 2.1: STstem of Coordinates

Point P can be characterized either by its own coordinates xi(p) or

by ua(P). The same holds true for the neighboring point Q. As for the arc

PQ, it is characterized by the differences Ax i and Au _. When Q approaches

15



P,

transformation stems

differences are replaced by differentials and the following

dxi . _x___i du_ ; du° . _u_____ dxi
Bu_ _xi

(2.2.1)

where dx i and du° are the components of the differential of the position

vector. In Eq. (2.2.1), and from now on, the summation convention is

implemented, i.e., a repeated (dummy) index is summed over its entire

permissible range (from I to n). Any set of n components, assuming the

values aa when observed in the system (uI, .... ,un) and the values A i when

observed in the other system, and which obeys a transformation law similar

to Sq. (2.2.1),

A I - _X---_iaa ; as - _U--_A i (2.2.2)

@ua Bx i '

is defined as "the contravariant components of a vector". Distinction

between the systems of coordinates is made by using capital (small) letter

and Latin (Greek) indices for quantities as they are observed in the

i
x -system and ua-system, respectively.

If there exists a scalar function ¢ which is point dependent, then,

its gradient obeys another transformation law, namely

(2.2.3)

Any set of n components a snf A i, obeying the transformation law

(2.2.4)
Bua _xi

A i - -- au ; a - -- A i,
@x I _ua
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is defined as "the set of covarlant componentsof a vector". It should be

e
noted that the componentsof the position vector (x i or u ) often do not

constitute components of a vector, according to the definitions of Eqs.

(2.2.2) and(2.2.4). It is obvious that "superscript" indices denote

contravarlant componentsand "subscript" indices covariant ones. Moreover,

it can be shownthat summationconventions are applicable in a "diagonal"

manner.

The metric properties of the space are determined by the length of

the elementary arc (as Q approaches P; see Fig. 2.1) in differential form

ds2 = Gljdxldx j (2.2.5)

where ds is the arc length. The quadratic form, Eq. (2.2.5), is specified

by the elements (Gij) of a symmetric positive definite matrix. If the

space can be described by a system (say yi) of rectangular Cartesian

coordinates, the form of Eq. (2.2.5) reduces to

ds 2 . dyidy i . 6ijdyidy j (2.2.6)

where 6ij are the Kronecker deltas. However, points are observed in the

e
u -system too, hence

ds 2 . geBdueduB

ax i dx j

gee " aue du B Gij

and

(2.2.7)
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The sets Gij and gab are defined as the covariant componentsof the metric

tensor. It is symmetric tensor of rank two. Any set of n2 components,

obeying the transformation rules

GlJ . axI dxj aaB
aua duB

A_J = axl auB a_B (2.28)
aua axj

aua auB

Aij - axiax j aa8

is defined as the set of contravariant (mixed, convariant) components of a

tensor of rank two. A tensor is symmetric if it is not affected by an

interchange within a pair of indices (i.e., Aij - Ajl, AiJ = AJ i, etc.).

The dots in the mixed components help to distinguish between a_B, a_,etc.

The conravariant components of the metric tensor are readily

available by matrix inversion, namely

clJajr" 'Ir' g° gBY" (2.2.9)

It is obvious that the mixed components of the metric tensor are the

Kroneoker deltas.

raisin_ indices

aa = gaBaB;

lowerin_ indices

aa = gaBaB;

The metric tensor facilitates the following operationsi

aaB = gaPgB°apo; a_B = gaPapB , (2.2. I0)

= ga_gBoa _° a "B aPBaaB ; a, " gap
(2.2.11)
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inner product

a8 _ 8 ba
a_ba " g a bB = g_Ba b = a_ (2.2.12)

No transformation rule is violated by Eqs. (2.2.10) and (2.2.11).

From now on, the mixed components of a tensor are going to be wltten

without dots, as no raising or lowering is intended. The idea is to keep

track of the omitted dots and remember that their lootlon is identical in

any system of coordLnates.

transformation rule

Then, the set of nP_q components, obeying the

1 BI Bq ..
tl"''lp ax 1 au aU al " ep

Aj I .Jq --"'"- "'" @xJq Bq"" = el Jl _ aB
_)u @x 1 """

(2.2.13)

is defined as the set of the covarlant (rank p) and covarlant (rank q) com-

ponents of a tensor. Raising or lowering an index affects the nature of

the transformation, Eq. (2.2.13).

It often occurs that although a set of indexed quantities can be

obtained, the verification of the tensor character of such a set by

inspection (whether the set follows the transformation law of Eq. (2.2.13))

may be quite cumbersome. The inconvenience of the verflflcatlon of the

transformation laws can be circumvented with the aid of the quotient

rule, as follows: let A(I I.... Ip, Jl .... Jq) denote a set of nP+q quantlt-

ties, the indices of which are 11 through Ip and Jl through jq, and let

Jl Js

BIt .... ir denote the components (contravarlant of rank s and covararlant

of rank r, (r < p, s < q) of an arbitrary tensor, If

Jl "''Js 11 ...I

A (II ip; Jl .Jq) Bj -Cj p-r
"eel " " eel . .

(2.2.14)
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where the C's in Eq. (2.2.14) are the componentsof a tensor, and the A's
i i
I.... P. This rule is very

are also componentsof a tensor, namely Ajl Jl

useful in the course of tensor algebra and tensor calculus as relations

such as Eqs. (2.2.14) are often by-products of various derivations. Thus,

tensor characteristics can be easily verified (or identified).

It is often required to calculate n-tiple integrals over a specified

domain in the n-dimensional space. The n-tiple "volume" element is

calculated as follows: let the n-tiple parallelopiped be constructed from

a vertex at point P, the edges along the coordinate lines (dx _ for the i-th

edge) and the opposite vertex at point Q, the coordinates of which are

obtained by adding dx i to the coodinates of P: then, the volume dV is

dV = _ dx I... dxn (2.2.15)

where G is the determinant of the square matrix, the elements of which are

the covariant components of the metric tensor.

Christoffel symbols of the second kind are defined by the formula

I Gis _ _Gks _GJk ) (2.2.16)

_x k _x j _x s

These symbols are not tensor components. However, Christoffel derived a

transformation rule

2xr = Vp _x__r _ Tr _xj _xk

_uOu 8 a8 _up Jk Du° _u 8
(2.2.17)

where the r's denote the Christoffel symbols, derived from the g's in the

ue-system according to Eq. (2.2.16). It is obvious that Christoffel symbols

do not transform llke tensor components unless the coordinate transforma-

tion (between the u's and the x's) Is afflne.
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There are several tensor operations, in order to produce tensors,

e.g,: addition (tensors of samerank), outer products (without repeated

indices), contractions (as implied in Eq. 2.2.14)), etc.. All these

operations are algebraic in nature. However, tensor fields (i.e., the

components depend on the coordinates) can be operated upon

bydifferentiation in order to produce tensors of higher ranks. It can be

shownthat the covariant derivative of a tensor, defined as follows

i1.i.i p _ il...ip + _ i_ il...r ...i p
Ail "Jq,k Bx_ Aj1"''Jq _=I rrk AJl Jq

r i I ...ip
- _ rj_kAjl . .J (2.2.18)

T-I ""r " q

does actually transform according to Eq. (2.2.13) as a set of components

contravariant of rank p and covariant of rank q + I. The comma in Eq.

(2.2.18) denotes the covariant derivatives not to be confused with partial

derivatives with respect to the spatial coordinates. The combinmation of

dots and of the index r in Eq. (2.2.18) means that the repeated (dummy)

index replaces the Xth subscript (or superscript), for the sake of contrac-

tion. It should be noted that the covariant derivatives of a tensor

really show how it varies while the observer is moving along a coordinate

llne. Hence, the operators of vector analysis (gradient, divergence, curl,

etc.) have to be phrased in terms of covariant derivatives.

As a consequence of the definition, given by Eq. (2.2.18), it can be

verified that covariant differentiation of sums and products should be

accomplished in the same manner as partial differentiation does. Moreover,

Ricci' s lemma

- g_,v = 0 (2.2.19)
gas,
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suggests that the componentsof the metric tensor behave like constants as

long as covariant differentiation is concerned., Thus, the operations of

raising and lowering indices and (on the other hand) of covarlant

differentation are commutative.

Naturally, covariant derivatives of higher order are obtained

systematically, i.e.,

ij...i
Aj P

1"''hq,kl

i .ip
- (AjI"[ )

I" "J'q,k ,1

The order of differentation may be significant, as

(2.2.20)

P

Ai,jk - Al,kJ - R.IJkA p (2.2.21)

where the R's are the component of the tensor of Riemann-Christoffel namely

rPlk__x_k rp • s rp - s rpR-_iJk = _xj iJ rik sj rij sk
(2.2.22)

This tensor manifests the curvatures of space. If and only if, the

Riemann-Christoffel tensor components vanish identically, then the space is

Euclidean (i.e., can be represented by a system of Cartesian coordinates).

i
The transformation tensor x is defined by

O

I A _x i
X m

a @ua

(2.2.23)

It can be proven that the quantities xi transform like the contravariant
o

components of a vector in the Latin indices (say, if the x-coordinates

transform to another system of x-coordinates) and like the covariant

components of a vector in the Greek idices (if the u-coordinates transform

to another material system of u-coordinates). Therefore, the symbol xi is
O
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written (following Sokolnikoff Ref. [44]) with a Latin superscript and a

Greek subscript. A similar reasoning yields the definition of the inverse

transformation tensor

Ao Bu°
ui = --_

_x

(2.2.24)

i

A treatment of double tensor, such as x , requires a definition of

total covariant derivative or the tensor derivative. Let a double tensor

be given by

Ae...8 i...J (xi,u o)
_..6k...l

(2.2.25)

Its total covariant derivative is defined by

Aa. .B i...j = As...8 i. [JlY.[.6 k .lie _...6 k,[ ,e
+ Aa...B i...j • m

_...6 k .... l,m X_

where, Ae...B i..J
_...6 k.[.l,_

Aa...S l...J
a _...6 k...1

_u_
+ .yO P .B i...JI + (2.2.27)p_ A_[[.6 k . "'"

_ _p Ae...s i...J +p...6 k...l "'"

Thus, it is a partial covariant derivative with respect to uo, where xi are

constant. For tensors which are not double, the definition given by Eq.

(2.2.26) reduces to the regular one.

The transformation tensor xi fulfills (x i depends on ua only),

Bx i i A i

= X;_ = Xo (2.2.28)
Bu2

The tensor formulation of the basic equations of continuum mechanics

has been presented in numerous books, e.g., Fung51, Sokolnlkoff 44, Green

and Zerna41, etc. Let the three-dimensional Euclidean space (i.e., our

empirical engineering space) be described by the system of coordinates xi.
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The solid continuum occupies a definite volume in space, the volume element

is denoted by dV. The continuum is bounded by a surface, the area element

is denoted by dA, vI denote the contravarlant components of the unit normal

to the surface, i.e., a unit vector that is perpendicular to the surface,

namely

GljVi_ j - I (2.2.29)

An area element conslsts of speclflc material particles. Let _ stand

for their density. This concept is analogous to that of mass density,

however, it is intended to specify a measure for the material entltles and

not the mass of inertial considerations. Since no dynamlcs are Involved,

let _ be called the "area mass density" and let dm be the "mass of an area

differential element, 1.e.,

dm- w dA (2.2.30)

If dP I denote the components of the force vector, acting on the area

element dA, then the surface tractions are defined as the mass density of

that force vector

Ti " d_. TI=_ dp i ,_T I _._l (2.2.31)
dm p _dA _ dA

The last equallty of Eqs. (2.2.31) defines the "conventional" surface

tractions. The present definition, Eqs. (2.2.31), Is based solely on

grounds of convenience in view of the foreseen klnamatlc developments.

The contravarlant components of the stress tensor, as defined by

Cauchy (cf. Fung 51, Sokolnlkoff 44, etc.) are denoted by olJ, and they are

associated with the tractions and with the unit normals as follows

_T j ,, _lj
v i (2.2.32)
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Thus, it is obvious that the stress components are associated with a

specific volume, whereas the components of the second Piola-Kirchhoff

stress tensor (cf. Hibbit et al. 52)

siJ . ..p___iJ (2.2.33)
Pc

are assoclated with mass (material entities) as stated in conjunction with

the traction, where p and Pc stand for the current mass density and for a

reference one, respectlvely.

As long as the "classlcal" terminology of tensor analysis is

concerned (cf. Sokolnlkoff44), the components of the stress tensor (a l j)

are those of absolute tensor, while those of the Plola-Klrchhoff stress

tensor (Si j) constitute a relative tensor.

Let fJ denote the componentsof the body forces per unit mass. The

equations of equilibrium are then

_lJ,1 + pfJ - 0 (2.2.34)

accompanied by the boundary eondltlons, Eqs. (2.2.32) at the tracted

boundari es.

These equations are based on equilibrium considerations exclusively.

The kinematic constraints are systematically incorporated by the principle

of virtual power (several publications nameit "The Principle of Virtual

Velocity"). Let 6vj denote the components of the vector of virtual

velocity, i.e., a vector field of values of velocity at which the material

particles are capable of moving, obeying all kinematical restrictions

(contlnulty, prescribed velocities where the virtual ones vanish, etc.).

Then, the integral theorem
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f lj
j e 6Vj,idV - _ pfJ6vjdV - I _TJ6vJ dA " 0 (2.2.35)

V V A

is equilvalent to the equations of equilibrium and to the complete set of

boundary conditions (Note that 6vj _ 0 implies that vj is prescribed).

2.3. Kinematics of the Continuum

Let a continuum be described by the two coordinate systems of Fig.

2.1 The xl-system stays at rest and will be labeled as "the fixed system",

while the uS-system is associated with the material points and will be

labeled as "the material system". As the continuum is moving and

deforming, coordinates xi of a material point (say P) are changing, i.e.,

xi(P) are tlme-dependent. Yet, a material point preserves its identity and

hence its material coordinates (u) are not changing in time (t). The
s

coordinate lines are assumed to "deform" with the continuum in order to

enable the material points to keep their coordinates (in the uS-system)

unchanged.

The components of the velocity vector in the fixed system are defined

by:

i _x i
v --- (2.3.1)

dt

While a geometer at P is observing, he cannot recognize any change in the

coordinates of any point, however, the main purpose of a geometer's

interest, namely distances, are obviously changing. As a matter of fact,

the differential form of Eq. (2.2.7) should be examined. To do so,

following Ref. 35, we must define material derivatives.

i....J s....8 i....JLet Ak. . v .... 6 = Ak...i
s.... B ixi s )
.... 6 , u , t be some double tensor
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depending on both xi and u .
o

Then its material derivative

DA''"

Dt
is given

by

l...j _...8 _Ai...j u...BDA
k...l _...6 k..I Y..6

,m

Dt Bt
U

i
X

_A"" "
- const _x

= const

+ ri AS...J e...8sq k.. Y..6

(2.3.2)

_ s Ai...J a...8 _ .Ivq = @A'''...

rkq s...l Y...6 "'J Bt

a
u - const

i
x - const

+ A''" V q
.eep(_

The general definition of Eq. (2.3.2) has two particular cases:

A) When one uses only the fixed spatial description for the description of

tensor A, i.e., A = A(xi,t) (as is common in fluid mechanics), then its

material derivative, Eq. (2.3.2), becomes

DAI...J _-[]8 )A''"-k...1 6 ...
ms n

Dt @t
+ A"', V_ (2.3.3)

i ...,q
x - const

The second term in the rlght hand slde of Eq. (2.3.3) is called the

translation term of A''" .

B) When one uses only a material description for A, i.e., A - A(u°,t) (as

is common in continuum mechanics) the material derivative becomes

o:..l'f ....
Is m

Dt _t
, { [i As...J a. Bsq k...l ,.[[a

cl
u - const

ee.

_ rS Ai...J _...8 _ } vq
kq s...l Y ..6 "'"

(2.3.4)
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D(.) is also called an intrinsic derivative of A. It is
In this case, D_

worthwhile to notice that, for single tensors in the material description,

the definition in Eq. (2.3.4) reduces to a simple partial derivative:

DA_[" .8 A_...8

Dt _t
us - const.

(2.3.5)

For the velocity vector, vi, one can show that the definition given by Eq.

(2.3.1) can be replaced in the following manner

i dx i _xi Dx i
v ...... (2.3.6)

dt 8t Dt

From here on, ill tensors will be given in the material description only,

unless otherwise specified. So all material derivatives of the different

tensors will be given by Eq., (2.3.4) (for the most general case of double

tensors).

Differentiation of Eq. (2.2.7) yields

DDE (ds 2) - 2ds D-tD [ds) . (_._D gas) duedu 8 (2.3.7)

By dividing both sides of Eq. (2.3.7) by 2ds 2, one obtains

D (log ds) - I DDt _ ( ) dub (2.3.8.-- 5-6 gob ds ds

du e

Obviously, _ is a unit vector, and Eq. (2.3.8) expresses the logarithmic

deformation rate. The clue for the intrinsic rates of change may be

unraveled, then, by the derivation of the rates of change of the metric

tensor. Hence, the second of Eqs. (2.2.7) should be differentiated to

yield
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a D lJ
-_ {gab ) = ( ) (2.3.9)_-_ xaxBGij

As attention is drawn toward the differentiation of Eq. (2.3.9), it

should be noticed that the components of the transformation tensor are

associated with a material point (they are changing while the continuum is

moving). Nevertheless, the components of the metric tensor are associated

with a spatial point and their sole cause of variation is the variation of

the x-coordinates. Hence, they are inherently independent of time. Then,

time differentiation yields

- ( x_ ÷ xigab °lj _ o _ ) (2.3.10)

The time derivatives of xI follows the general form of Eq. (2.3.4)

Dxi axi r i i s k _ _xi si s ka a ÷ xv - [-- )+ r kXV
D--t'--" _)T Sk Xsk a _ _U_ a

- -- _xi 1"i x s v k (2.3.11)

The last equality in Eq. (2.3.11) is J ustlfled by the fact that material
!

coordinates (ua) are time-independent. Use of Eq. (2.3.6) into Eq.

(2.3.11) and of the definition of covarlant derivatives, Eq. (2.2.26)

yields

Dxi Fi vkx s i A I----_ [v l). - v - v
Dt au a sk u ;a ,o

(2.3.12)

Since v i denote components of a vector in the fixed system, they can be

transformed to the material system by Eq. (2.2.2)

i i a vpv = x v ; ,, uPv r (2.3.13)
r
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Naturally, the velocities in the material system do not measure time

derivatives of coordinates; their sole significance stems from the

transformation rule, Eq. (2.3.13), as the geometer cannot measure them

directly (this argument will be dwelt upon later)• Hence, thusly operating

on Eq. (2.3.12) yields

i - (xlv p) = X i vp * XlV p (2.3.14)
V,a p ,o p,o p ,_

l
Special treatment is required for the evaluation of x

ppo
• As already

i
stated, x

O
are tensor components in both coordinates, p & o systems, then by

Eq. (2.2.26)

i a i _p x i i xj axk

o,8 @uB o oB p TJk o _u B

a2xi
ypx I _i J k
o5 p * ]jkXoXB

However, substitution of Eq. (2.2.17) into Eq. (2.3.15) yields

(2.3.15)

i
X - 0
O,8

and finally

(2.3.16)

i) . v i i p (2.3.17)
D (X O ,O p ,OD"T- - x v

Now, Eq. (2.3.10) may be expressed in terms of velocities (deformation

rates)

D . {xiv p x_ * x I xj vP,B)D-t gob Oij p ,o o p

Vp + g vP= +
" gPB ,O Op ,p TM vo,B v8,o

(2.3.18)
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The componentsof the deformatlon rate are then, defined as

and thus,

A
I [v * vs, )dab " _ 8 a = dBa

(2.3.19)

o_(logds)-d du_3du__3_
Dt a8 ds ds

(2.3.20)

D
_'_ (goB)" 2dab

(2.3.21)

The intrinsic geometer is, by no means, capable of measuring

velocities directly, Eq. (2.3.13), yet he can measure metric rates, Eq.

(2.3.18), and obtain the velocities by spatial integration of Eq. (2.3.18).

Two problems arise in conjunction with this: (a) a system of equations

like Eqs. (2.3.19) (i.e., given dab and required va is not necessarily com-

patible, and (b) even if compatibility is ascertained, the solution is not

unique. Treatment of the first problem will be postponed, while the second

is alleviated by the definition of the spin tensor

then

I
web.A_ [%,B- vB,e]" - %a

va, B = des * web = dBa - wBa

The derivatives of the contravariant components gOB are readily

obtained by the differentiation of Eq. (2.2.9), namely

hence

a gOBgB_ _t = -2gaBdBY

(2.3.22)

(2.3.23)

(2.3.24)

(2.3.25)

31



Multiplication by gS> and contraction yield

"_ag0a = _ 2gaSgP_d8 _ (2.3.26)

As soon as the deformation rate is established as the time derivative

of the metric tensor, _ the intrinsic characteristics of the continuum (i.e.,

Chrlstoffel symbols, the Riemann-Chrlstoffel tensor, etc.), being metric

properties of space, are readily differentiated (with respect to time).

This depends on the deformation rate (daB) and not on the spin (waB). As

an illustration, the determinant of the metric tensor (g) is a measure for

a volume element (a detailed proof appears in Ref. 49 and the result for

the rate of dilitation is

a gaBda BE - - vP,P
It is evident that the spin components do not affect the expressions

in Eq. (2.3.2?) (dilitation is not affected by the spin).

As Chrlstoffel symbols, Eq. (2.2o16), play an essential role in

tensor calculus, the need for an evaluation of their time derivatives

cannot be underestimated. Hence

a"E oo'7 "E )( *---
au ° au p auB

au ° au° au B

Systematic treatment of the first term in Eq. (2.3.28) yields

I a gab = _ 2_ogeBdB p

(2.3.28)

(2.3.29)
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Nowsince the u-coordinates are time-independent, then

au° aua at au°

+ _P _ (cf. Eq. 2.2.18)" dpB,a pa d_8 + x adpp

Interchanging the triads of indices and rearranging yield

(2.3.30)

I gab a __ agBa agBa

au a au p aus

gaB( + - d
" dpB,a dBa,p pa,B

+ 2 _'_ad]jB) (2..3.31)

Substitution of Eqs. (2.3.29) and (2.3.31) into Eq. (2.3.28) yields

a ?a . gOB + - d ) (2.3.32)
a-'t pa {dpB,a dBo,B pa,B

In cases where rates llke those in Eq. (2.3.32) are desired in terms of

velocities, elementary manipulations lead to

_ _a . ! (v a + v a + ! vB {r 8 a + r 8 u ) (2.3.33)at po 2 ,po ,op 2 .p.o .o'p

It should be noticed that although Chrlstoffel symbols are not tensor

componets, their time derivatives are. Speolallzation of Eqs. (2.3.32) and

(2.3.33) for Euclidean spaces are self-evldent.

The treatment of curvature rates concludes the discussion of the

kinematics of the continuum. Regardless of the type of space considered,

Eq. (2.2.22) should be differentiated. Then

at • pot au o pT pT lo auT po
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Changing the order of differentiation results in spatial der'ivatives or a

tensor, namely

m m D V_ )

Dt D_° pT DIJ°

Benefitting from the rules of covariant differentiation

(2.3.35)

D__ D__

DUo

po Dt oT Dt '

The first pair of terms in Eq. (2.3.34) reduces to

(2.3.36)

D't Duo p T pT _o , o pa i)t a • _)----'t

The second pair of terms is obtained by changing indices.

into Eq. (2.3.34) and rearrangement yield

(2.3.37)

Substitution

[r.po,)"[ ),o T

o_ dpT - d + + d -= g { ,TO p_,oT d_T,po pT,_O dAo,p _) (2.3.38)

As a summary of the kinematic considerations, Eq. (2.3.28) is

bivalent. On one hand it relates velocities to the logarithmic rate of

deformation. This relation is very useful in applications where velocities
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are the principal dependent variables. On the other hand, if the

deformation rates are given, Eq. (2.3.23) changes its role from formula to

equation, and it must be solved for the velocities. In the latter case,

Eq. (2.3.38) is an essential asset, because it expresses the compatibility

conditions, i.e., a symmetric tensor dub can be introduced into Eq.

(2.3.18) to yield the resultant velocities v , if they (dab) satisty Eq.

(2.3.38). The commonplace Euclidean space supplies an immediate

manifestation. The the T's and their time derivatives identically vanish,

and the familiar equations of compatibility from the mathematical theory of

elasticity (cf. Sokolnikoff Ref. [44]) appear. Kinematics and deformations

of surfaces present another example, then an intrinsic relation like Eq.

(2.3.38) must be equated to the known time derivatives of the

Rieamann-Christoffel tensor (say, from the equation of Gauss, cf.

Sokol ni koff 44).

2.4 Time Derivatives of Tensor Components

Let a continuum in space be moving (translating, rotating, deforming)

together with tensor fields associated with its material points. The

meaning is that various tensor fields (e.g., forces, stresses, heat fluxes,

etc.) are observed and measured in conjunction with material points. This

is the Lagrangean viewpoint. However, the position of the observer is

very significant. If the observer resides somewhere in the material system

it relates the tensor components to a deforming system of coordinates.

Thus, the rates by which the components change may appear insufficient for

the complete understanding of the observed phenomena. On the other hand, a

fixed observer (naturally, in the fixed system), while observing the

various fields in conjunction with a specific material point (he is capable
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of tracing a moving point) associates the components with time-independent

metric properties. It should be stressed that the latter observer does not

pretend to be Eulerian, it is Lagrangean as the former because its scope of

interest (material points rather than spatial points) matters and not his

residence.

Hence, let the symbol _ denote the operation of material deriva-

tive, by which the rate of change is measured within the material system.

Consequently, the tensor components are observed in order to evaluate their

rates of change; however, convective terms (cf. Aris50) originating from

the curvature of the coordinate lines, are also taken into account. On the

d

other hand, the symbol --_ is used to denote the operation of total deriva-

tive, by which, the rate of change is measured from a fixed standpoint.

The components, the rates of change of which are evaluated by the operation

of the total derivative, are refereed to unchanging coordinate lines. As

rates within such a frame of reference seem to be most adequate for several

applications of mathematical physics (of. Sokolnikoff 44, the rules of total

differentiation have to be elaborated upon).

Let, then, the transformation rule of Eq. (2.2.13) be rephrased with

the aid of the definitions of Eqs. (2.2.23) and (2.2.24), namely

ii °'i
" "Jq _I _p I Jq I "''Bq

The total derivative is defined as the rate of change of the components

iI
ip (including the convective effect and those of curved coordinate

AJ I .... Jq

lines); however, formal Implementatlon of this definition on Eq. (2.4.1)

leads to:
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i ...i i i B1 Bq a 1..._p
d Ajl p = D (x I P ...u )
d-E I ""Jq D-'t _1"''X_p uj I jq aB I .Bq

(2.4.2)

for the fact is that the partial derivatives of all the bracketed terms in

Eq. (2.4.2) have already been designed to account for the convective

effects. A doubt arises whether the expressions in Eq. (2.4.2) do actually

yield a tensor out of a tensor. As a matter of fact. the sole "trouble" is

embodied in the partial derivative of the tensor components. Let, then up

denote another set of material coordinates, and let barred symbols denote

quantities in the ue-system, then, following Eq. (2.2.13)

_1 "''ep au au p au a_ q -Pl ""Pp
I I°iiI III a

aB1'''Bq --Pl p BuS1 8q 0 ...oau a_ p au I q

(2.4.3)

As a consequence of the partial differentiation

a 1 o _o 1 o
a el""Op au ... au p pu ... a_ q a

aB1 "_ pp• ..Bq -Pl Bq at
au auB1 au

-Pl "" "Pq
a

o1 ...Oq

a 1 a i a _01 o

au._L .. a { au._L ) aup au a_q -a1""°p

_=I au-Pl • at a p_ "'" a_pp _au. "'" au6q aB1"" •Bq

o _01 o_ o

q _I au p au -_a-- _ ) _ Pau._L_...... [ au ...
--Pl aupp auSl 8_ 6q q1"''Bq_=1 au au au

(2.4.4)

and the sums in Eqs. (2.4.4) vanish because the material coordinates are
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inherently tlme-lndependent. Equation (2.4.4) expresses, then, a tensor

transformation rule.

Returning to the definition of Eq. (2.4.2), formal operations imply

11..; t 81...uBq c=1...0d All ...lp =. x p i) p

dt Jl .Jq xo I... ap uJ I . Jq_ as 1...sq

P i 1 1}. t IB1 8q c=1 ..a

x ... ( a ) ... x P uj ... u a81" P
2_=1 al _'t x°=_ (_p 1 jq • • Bq

(2.4.5)

P 11 1 8 ;) 8;_ Bq ('1""c=

x ... x p uJ I "'" ( "_E uj ) ... u a B P_=I al ap I Jq I"" "8q

The derivatives in the first term of Eq. (2.4.5) are readily obtained

from Eq. (2.3.17), those of the second sum may be obtained by

differentiation of the identity

then

x (2.4.6)

D o
i p a + xI u- = 0 (2.4.7)

xpvuj _ _E 3

Multiplication by u_, contraction and rearranging yield

D

The terms in Eq. (2.4.5) should, then, be elaborated on

(2.4.8)

xl,_ (_1"''ap Xpt% ('1 "''° I%i) ) = v p P = x
"_ ( c,X aBl...B q ,(_;_ aBl...B q c=_,

a_ el...p...ap

v ,paB1...8 q
(2.4.9)
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al...a B_
a_ B_) P - -v

at (uj_ aBI...B q ,p

up al...a p . B_ vp aal"'aP

,J_ aB I ..Bq - u,j_ ,B_ BI...p...B q
(2.4.10)

The latter equalities in Eqs. (2.4.9) and (2.4.10) stem from interchanges

between repeated indices. Substitution of Eqs. (2.4.9) and (2.4.10) into

Eq. (2.4.5) yields

d iI .i.lp iI i B 1 Bq a el ...a
Ajl = x ... x p uj ... u [ _ a P.Jq a I ap I Jq BI...8q

p a;_ a 1 . ..p...a q a 1 ...a

Z v aB1 IBq P - _ vP aB I P .Bq) (2.4.11)
_=1 'P "'" ;_=1 'B_ "''P'"

Thls is a typical manifestation of the tensor character of the total

derivatives. It should then be rephrased as the rule for total

differentiation in the material system, namely

d al''iaPaalB1 I aBlaliiia p • _a_ aBal"''P'''OP _
d-E .. Bq _ Bq _-I v,p 1...Bq }i I ,B_ B I P'''_q

(2.4.12)

It is obvious that the total derivatives depend on the velocity gradients.

Looking forward towards the influences of the various types of motion, Eq.

(2.3.23) is utilized to obtain

• dJ al--.a pd a 1 ..ap +

_'t aB 1 ... Bq I _ a B1... Bq

e._ (_1"""p" ""ap q aI ... ap

_ - _ wP-B;_aBI ..p...Bq
,_I 1 "P aBl"''Bq _-1

(2.4.13)

dJ

where the symbol _-_ denotes the operation of the Jaumann time derivative

(cf. Fung51), i.e., total derivative with the rotational effects discarded,

namely.
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P
dJ a1...a a1...a a_
d-t aB p a p

1 8q " _E aB .• 13q ÷ _ d• • • P

" 1 _=1

q

a1...p...ap _ _ d p e1"i'ap
a81...13 q 13_ a81 .p...Sq

(2.4.14)

The total time derivative and the Jaumann one have two interesting char-

acteristics: sums and products of tensors are differentiated with the aid

of the same rules of the differential calculus, and the derivatvies of the

metric tensor vanish identically• The former statement establishes the

formal readiness of the time differentiation of tensor equations, while the

latter enables lowering (or raising) indices before (or after) the time

differentiation without affecting the form of the equations•

Last but not least, the total differentation of the covariant

derivatives of tensors should be studied. The exact relation between both

differentiations (temporal vs. spatial) is the clue for a reliable rate

theory (and applications). Obviously, the covariant derivative of a tensor

is a tensor, the covariant rank of which is higher (by one) from that of

the original one, hence from Eq. (2.4.12).

a 01"''_
P

a) o1..._...0 p
A-1 v'uaBl"''Bq,p

q

v_ al""a p
,IE}_aB1..._ ...Sq,p

_-1

(} cI
P

(2.4.15)

The first term in Eq. (2.4.15) is not familiar, then by Eq. (2.2.27)

P

"i a a (_1 "''° a;_ al...iJ...e p
a (a:i .ap )''_(-- a8 .Sq _,-1 "Yp_'a_Ia"E • .Bq,p aup 1"" P)* _ ...Bq
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= __ _ a I ...ap

a ( "_E aB I .Bq ) +au p •.

q

_P a° I ...@p
_=1 B_p B_ .p...Bq

P aY o 1...p...ap + _% a a 1...p...o

{ _ as I.. Bq PP "_ aB1" .Bq P)
;_=I

a_p
q B_p

_=I

a1"''ap + _/u a a1""Op )

-- aB1...u...B q B_p a'-_aB I. .u...Bq

a o 1 ...ap p

a01 ) + I= { "_ ...Bq ,P ;t=1

°1"''P'''Op _a o;_

aB I ...Bq at pu

(2.4.16)

q
(}I ...O

I aB . P _ _u
• .U-..Bq @t B;_PI

_=I

Now, the first term in Eq. (2.4.16) is obtained by the rule of total

differentiation of Eq. (2.4.12), namely

, ,Op

a al i.Bq),p[TE aBI.
= { d °1"i'°P),

aB I. •Bq P

P
o_ 0 I...p...o

- _ ( vua B P)
' I"" .Bq

;t-1

,P

q

+ _ {VP, a_1111Op, ),P
p •••Bqv_

(2.4.17)

Collecting terms of Eqs. (2.4.15, 2.4.16, 2.4.17) yields

d °1"''°
-_ (a P

BI-.-Bq, p

d °1"ilBp )
) = ( _ aB 1. Bq ,p

_ vp o I ...Op

,p aB 1 ..Sq, u

P

+ _ °I'I'V'''°P a % _

_=laBl • .Bq (-_ YuP

. .Op

°li.u...Bq { a yp
aB1 "_t Stp
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Substitution of Eq. (2..3.33) and utilization of the characteristics of the

Riemann-Christoffel tensor (Sokolnikoff 44 presents them as exercises) yield

the final result

d jail''isp. 8q,p ) " ( dd_ta8lu1"''ap.Sq),p- vPaU1"''UP,p BI ..Sq,u

P q

- + r u ) a81 + [ va(raB_p- 8A .... 8q
va(roup- ap ap. .. u

_-I • .Sq A=I

(2.4.19)

In summary, the operations of time differentiation that of covarlant one

are permissible only in case of rigid body translations (vW = 0), and any

other motion implies further terms. In a Euclidean space, the effect of

higher tensor rank is added. Curved spaces imply more complicated terms

originating from compatibility considerations.

2.5 The Principle of the Rate of the Virtual Power

The principle of virtual power (or of virtual velocity), as expressed

in Eq. (2.2.35), is equivalent to a set of differential equations

(equilibrium) and associated boundary conditions (should be appropriately

selected between kinematical and natural). However, practical reasoning

concerning solution procedures gives rise to basic doubts, as follows. Let

a system of specific body forces (fJ) and specific surface tractions (TJ)

act on a solid continuum. It is, natually, deformed and stressed. The

stresses satisfy Eqs (2.2.35) or (2.3.34) but their relations with the

deformation are not self-evident. There are constitutive theories

asserting that considerations of convenience (hyperelasticity) or necessity

(hypoelasticity) introduce incremental "stress-straln" relationships, i .e.,

the stress rate is assumed to depend on the deformation rate. In such
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cases, equations like Eq. (2.2.35) need be manipulated further In order to

obtain terms with stress rates.

The objective of this section is, then, within the scope of obtaining

the total time derivative of the principle of virtual power. The resultant

virtual theorem may be applicable for the derivation of rate equations

(equilibrium rate and incremental boundary conditions) and for the direct

development of solution methods (e.g., incremental finite elements).

Throughout this section, the space is assumed to be Euclidean and all

tensor components, following the notations at the end of Subsection 2.2

(Eqs. (2.2.17) and so forth), are measuredonly in the material system of

coordinates. Hence, the tensor notation reverts to Latin indices, keeping

the material system in mind.

Eq. (2.2.35) should, first, be rephrased

J
V V A

Comparison between Eqs. (2.5.1) and (2.2.35) may explain the symbol din, it

stands for the mass of a (material) volume element or surface element

respectively. The volume and the area are varying during the deformation,

the mass remains constant.

o °fd'_ I alJ6vJ, idV - d'--t

V V

ddt [ I fJ6vJ dm _

V

Total differentiaton of Eq. (2.5.1) yields

fJ6vjdm __d I TJ6vJ dm- "dT. - 0 (2.5.2)

A

Partial results are readily obtained

A V

I dT j 6vjdm

A

+ I fj d 6vjdm*dtdt I Tj d6vjdmdt (2.5.3)

V A
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The first integral in Eq. (2.5.2) needs detailed treatment,

d _ alJ6 Vj,ldV = F delJ 6v ,ldV + e lj ,1 dV • elJ6vj,1 tdV) J j at
V V V V

(2.5.4)

The last term In Eq. (2.5.4) symbolizes the volume changes, however from

Eqs. (2.3.21) and (2.3.27) one can obtain

d
¢_" dV = v k dV (2.5.5)_-_ dV = d K ,K

The flrst term in Eq. (2.5.4) consists of the deslred stress rates, and

therefore the incremental constitutive equations should be substituted

there. The remaining integrals in Eq. (2.5.4) should, then, be elaborated

upon, since the time derivative of the (virtual) velocity exists. This is

a typical need of the rate of a gradient, by Eq. (2.4.19)

d d6vj -vk,1 6vj'_ (6Vj,l) " dt ,1 ,k
(2.5.6)

Collecting terms and rearranging yield

da lj + alJv,kk _ vI kj)6Vj,ldV- I p df j -I" dTj 6VjdAI( _ ,k -_-- 6vjdV d--t'-

V V A

(2.5.7)

d6vj

V V A

At any instant, Eq. (2.5.7) is satisfied. The virtual velocity and Its

time derivative are, then, independent. Moreover, the last three terms of

Eq. (2.5.7) (those depending on the "virtual acceleration") are equivalent

to Eq. (2.2.35). Hence, the principle of the rate of virtual power may be

obtained in its concise form.
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I (dolJ + olJvkdt ,k
V

- akJVlpk ] 6vj,ldV

df j dT j
- _ p _ avjdV - I' _" avjdA - 0

V A

(2.5.8)

For further classifications, the total derivative of the stress components

will be represented by Jaumann derivative, Eq. (2.4.14), namely

daiJdt " dJ_lJdt + m_k °kj + m!k alk (2.5.9)

Let the following integrals be defined

F dJalJ 6 Vj,ldV (2.5.10)
Ie " _ dt

V

Id = [ (aiJdk k - okJdlk)6 vj,idV

V

(2.5.11)

Ir - [J.kolk vj,ldV (2.5.12)
V

Then, substitutions in Eq. (2.5.8) yield

A I dfJ ; dT jI - Ie • Id ÷ Ir " p _- 6vjdV + _ _ 6 vjdA (2.5.13)

V A

The integral I e, Eq. (2.5.10), is expected to be formally similar to

the "conventional" integrals of linear elasticity. The integral Ir, Eq.

• (2.5.12), is the sole outcome of rigid rotations, and the integral Id, Eq.

(2.5.11), is required for completeness.

It is obvious that further manipulations on Eq. (2.5.8), especially

the use of Gauss' theorem, lead to the field equations and associated
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boundary conditions. However, the integral form is quite satisfactory for

the utilization of the finite element method. Further inspection of Eq.

(2.5.8) should reveal the resemblance and the differences to the integral

incremental principles presented by Hibbltt et a152 and numeroussuccessors.

Their scope is quite different (the Piola-Kirchhoff stress tensor) and

their formulation contains several simplifications.

2.6 Concludln_ Remarks

The formulations of this section focus upon tensor rate operators

associated with continuum mechanics. Tensor definitions and corollaries

are compiled. The deformation rates and related topics regarding the

kinematics of space are presented. Compatibility of deformation is

elaborated on as an outcome of the curvature of space.

Beside the intrinsic rates of change, total {time) derivatives and

partial derivatives of an arbitrary tensor are presented. The material

system of coordinates is useful for applications, the spatial is favorable

for reference, their correlations are highlighted by the above mentioned

rates. Last but not least, the error-prone rate of a gradient is presented

and proved to differ from the gradient of a rate.

As a consequence of these formulations, various tensor equations

(e.g., equilibrium of elastic solids) can be differential (in time) as all

tools are available.

However, the validity of the tensor formulations of this section is

restricted. As the time derivatives of the transformation tensor, Eqs.

(2.3.11) and (2.3.12), are elaborated upon,' the existence of their inverse

tensor, Eq. (2.2.24) is assumed. Hence, all cases where the inverse

transformation tensor cannot be established are outside the scope of the
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above mentioned rate operators. These are the cases where the

dlmenslonallty of the material coordinates is less than that of the spatial.

For instance, unidlmenslonal (arches, beams) or bldimensional (shells,

plates) material system of coordinates. Then the various curvature

components ought to be considered. The conventional curvatures (namely-

radii of tangent or normal circles) have to be accompanied by total

curvatures, expressing the intrinsic properties. Rate operators for these

values must be taken into account in an orderly fashion.
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3. CONSTITUTIVE EQUATIONS

3. I Introduction

In Section 2, the equations, necessary for the precise treatment of

constitutive equations, were presented. The present section contains a

development of a three-dlmenslonal theory which describes the incremental

(rate) behavior of an elasto-thermo-vlscoplastlc continuum, in the presence

of finite strain. Such a theory forms the necessary foundation for further

developments of approximate theories for special structures (beams, plates,

shells).

3.2 Incremental Theory of Plastlclt_

The first formulations of incremental elasto-plastlc constitutive

equations have been by given St_Venant (1870), Levy (1870), Von Mises

(1913), Prandtl (1925) and Reuss (1930). These investigators have

formulated various plasticity theories, in a style similar to that of the

linear theory of elasticity, and ignored some important points, such as the

correct stress rate and the difference between Lagrangenlan coordinates and

Eulerlan coordinates in large deformations. A good historical review and

additional details may be found in Refs. 53-54. It should be noted that

these works form the basis of what might be called "an engineering theory

of plasticity" and many works, books and researches rely upon them.

The recent years brought a need for accurate solutions of

elasto-plastic problems with large deformations. It became clear that the

classlcal elasto-plastlc theories, men_loned above are not sufficient and

it is necessary to give a more exact formulation of the constitutive

equations. Three main research directions have been developed: The first

direction begins with the works of Hill 17,55. In this approach the elastic

increment, which appears in the constitutive equations, is derived from a
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finite elastic law. For that purpose a finite elastic energy function

(potential) must be defined together with a finite elastic strain.

A second research direction has been suggested by Sedov38 and

independently by Green and Naghdi 56. The elasto-plastic constitutive

equations are based on thermodynamic considerations. The concepts of

finite strain and a potential are also used in these works. The

formulations are general and have not been applied to particular problems.

The third research direction is not restricted to the theory of

plasticity. Some thirty years ago new type of materials have been defined

by Truesdel157-60, the hypoelastic materials. The constitutive equations

of these materials relate the stress rate with the strain rate. Some

authors have shown that the hypoelastic definition includes, as special

cases, various forms of plastic laws 61-64. Detailed reviews on

hypoelasticity are given in Refs. 39 and 65.

The classical incremental theories of plasticity make use of an

initial yield condition, a hardening rule, and a flow rule in

characterizing the strain-hardening response of a material. Although these

classical theories continue to be utilized extensively in finite element

computer programs, this may be true only because more suitable models have

not yet been developed.

Comparison of the models with experimental results indicates

relatively good agreement in uniaxial cases under simple loading

conditions. However, for biaxial and triaxial cases and situations where

the loading is cyclic, when creep and plasticity interact, and when the

strain rates are high, the results are often in disagreement with

experiment.

The two most widely used yield conditions are the Tresca (maximum

shear stress) and yon Mises (J2 theory) conditions. For isotropic metals,

49



the yon Mises yield condition generally provides a better description of

initial yielding than does the Tresca condition. However, for rocks and

soils, the Tresca condition is often used. Other yield conditions have

been proposed, however, these have not found wide use because of their

mathematlcal complexl ty.

A flow rule Is used to separate the total strain increment into

elastic and plastic components. The most generally accepted flow rule,

termed the normality condition, states that as the stress state of a

material point comes into contact with and pierces the material's yield

surface, the resulting plastic strain increment is along the outward normal

to the yield surface at the point of penetration.

The hardening rule provides a description of the changing size and

shape of the subsequent yield surface, during plastic flow. In addition to

simple expansion and/or translation, experimental evidence has shown that

subsequent yield surfaces may exhibit corners, general dlstorslon, various

Bauschinger effects, and dependence on prior cyclic history, strain rate,

temperature and hold time, to mention only a few parameters 66. For

simplicity, most finite element programs make use of hardening rules which

account only for expansion and/or translation of the yield surface.

The classical isotroplc hardening rule postulates that the yield

surface expands uniformly during plastic deformation. In its simplest form

wherein one assumes the yon Mises yield condition and associated flow rule,

the rate of strain hardening may be obtained by relating a value of

equivalent total plastic strain to a point on a unlaxlal stress-straln

curve, so that a simple tensile test is all that Is necessary to determine

the hardening rule parameters. The simplicity of applying the isotroplc
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hardening rule has made it very popular in finite element plasticity

analysis.

In contrast, the kinematic hardening model of Prager-Ziegler 67

proposes that the yield surface translates as a rigid shape during plastic

flow; the direction of translation being given by a vector connecting the

current center of the yield surface and the current stress state. This

gives rise to an ideal Bauschlnger effect in which the reverse yield stress

is lower by an amount of stress equal to the corresponding prior strain

hardening.

The Besseling-Whlte (mechanical sublayer) model 68 makes use of a

superposition of elastic-perfectly plastic stress states, in order to

approximate strain hardening behavior. This model Is often idealized

mechanically as a parallel arrangement of elastlc-perfectly plastic layers,

whose yield stresses are adjusted to duplicate a plece-wise llnearizatlon

of the uniaxlal stress-straln curve (the number of layers being equal to

the number of points selected on the st_ess-straln curve). Like the

kinematic model, the mechanical sublayer model predicts a rigid translation

of the yield surface.

The hardening model proposed by Mroz 69 employs the concept of a field

of surfaces of constant work hardening modull. Each point of a plece-wlse

linear uniaxlal stress-strain curve is represented in stress space by a

surface geometrically similar to the initial yield surface but of different

size. The yield surface is assumed to expand and translate within thls

field, contacting and pushing each surface, along with it, as each is

encountered.

Krleg69 proposed a two surface plasticity model, where the yield

surface translates and expands within an enclosing "limit surface", which
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also is allowed to translate and expand independently of the yield. The

hardening modulus is then assumed to be a function of the distance between

the two surfaces at the loading point. Another model is the piecewise

linear strain hardening theory of Hodge 70, which makes use of a yield

polygon.

As experimental evidence points out, isotropic and kinematic hardening

tend to bracket actual material response in many cases and, for this

reason, a number of combined isotropic-kinematic models have been proposed.

Most models are based on a constant ratio of expansion to translation,

although some results have been reported for a variable ratio based on

accumulated plastic strain 71 •

3.3 Fundamental Assumptions

In the treatment of elastic-plastic or elastic-viscoplastic

deformations, we have to distinguish between the description as a

thermo-mechanical process and the corresponding one by means of

thermodynamic state equations. It is sometimes assumed that in the case of

process which proceeds through non-equillbrlum states, it is fundamentally

necessary to start with a description of the process I 9,37,72.

Alternatively, it has been proposed that one might assume local equilibrium

for the elements of a body and therefore describe the state of the

elements, in general, by state equations 73_75. The consequences of

adopting these two approaches become particularly clear when considering

the influence of entropy. In the description of the process, entropy is a

derived quantity and in" principle we can proceed without introducing it.

In the description by state equations it is, on the contrary, a necessary

state value, which, at least in principle, can be immediately determined.

When restricting ourselves to homogeneous, quasi-statlcal thermomechanical
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processes, the description by state equations can be viewed as equivalent

to that by processes73,76. The controversial issues will, thus, not be

discussed further.

We are dealing with large, non-isothermal deformation of solid

polycrystalline bodies within the frame of classical continuum mechanics

and thermodynamics. A phenomenologlcal theory of such coupled

thermo-mechanical processes can be based on a material model including four

differ ent el ements. 77,78

a) An elastic (or viscoelastic) element representing the reversible

thermo-mechanical processes governed by thermodynamical state

equat ions;

b) An element reflecting certain thermo-mechanical processes which

lead to changes of the internal material structure, independent of

plastic yield and thermally activated creep;

c) A viscoplastic (plastic) element rendering also certain changes of

the accompanying constrained equilibrium state; and

d) An element representing thermally activated creep and relaxation

phenomena, which also may be connected with corresponding changes

of the internal material structure.

Within the frame of the intended phenomenological theory, it is

assumed that the respective thermodynamical state of each element is

uniquely defined by the actual values of a finite set of external and

internal state variables. Moreover, this enables one to introduce an

accompanying fictitious state of constrained thermodynamical equilibrium,

by means of a fictitious reversible process during which the internal

variables are kept constant. This leads to a unique definition of

reversible deformations 77, 78.
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Viscoplastic deformations are attributed to slip processes in certain

crystal planes. These slip processes are based essentially on the notion

of lattice defects. Roughly, we maydistinguish local (bounded) processes

restricted to the single grains (but occuring at the same time in all

concerned grains) and global processes running through the whole body. The

local processes comprehendthe generalization and dissolution of lattice

defects, the piling up of lattice defects at grain boundaries, etc. They

are very sensitive to changes of the stress state, i.e. to the stress

increments. The work involved in these local processes is relatively small

and mainly non-dissipative. The global processes are mainly dissipative

and essentially governed by the actual stress state. The initiation and

continuation of global processes, however, is always coupled with local

processes.

3.4 Kinematic Considerations

Basic to most of the postulated models of large elastic-plastic

deformation behavior is the additive decomposition 79 of drs and EAB (see

Section 2.2.2) into elastic and plastic parts;

E P E P
= + = (3.4.1)drs drs drs' EAB EAB + EAB

The validity of this additive decomposition in the case of finite

elastic-plastic strains has been questioned by .Lee and his

associates29, 80-82 Lee's 29 approach is based on the total purely elastic

unloading from the current state to an intermediate unstressed plastically

deformed configuration, without any reverse or other kind of plastic flow.

The major point in his theory is to decouple the total elastically induced

54



distortion and measure it from a relaxed unstressed state, which is only

plastically deformedfrom the initial to the intermediate configuration.

Accordintly, the deformation gradient F (our transformation tensor in

Section 2) is decomposedin the multlpllcatlve form,

E P
F _ F F (3.4.2)

P
where F transforms a llne element from the initial configuration to the

E
intermediate configuration, and F from the latter to the current

configuration. The intermediate configuration is chosen in such a way so
P

that F is unaffected by the presence of rigid body motion. The deformation

rate tensors, dsr and drs are then defined. After some manipulations, Lee

shows the following relation:

E E P E
. * F-I

drs drs Frk dkl is

E P E_I

* Frk Wkl Fls
s s

(3.4.3)

where the subscript s denotes the symmetric parts. Generalization of Lee's

theory for anlsotroplc elasticity was given by Mande183.

Lee's theory is based on the assumption that the elastic law does not

change with the history of deformation and hence a total elastic unloading

can take place. However, it has been shown 84 that after a fair amount of

plastic flow has taken place, reverse plastic deformation will result soon

upon unloading, even for small strains. Therefore, a total elastic

unloading cannot have any physical significance. In view of this, the
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theory of Lee appears as a special case of the theory of Green and Naghdi 85.

Although not as general as the theory of Green and Naghdi, Lee's theory, on

the other hand, has the advantage of being more easily fitted wlth the

physical property of Invarlance of elasticity with respect to plastic

deformation. Mande183 in particular has pointed out that the Green-Naghdl

theory is not convenient if one wants to include anlsotroplc elasticity

effects. All thls can be avoided by the use of the convected coordinates

as proposed by SedGy38 and Lehmann 86. The formulation presented herein

will follow the work of Lehmann.

All quantities from here on will be related to the metric of the

coordinate system ua in the deformed state. Hence,

o
a GaB

f_ - GB_

(3.4.4)

(f-1 a Ga 8 o
)_ = GB_

o
where the supercrlbed O relates to the Inltial state at time t. The

deformation rate is,

a GoB 6Ba

a

. ,i,[f-1)B B fs

(3.4.7)

and the (,) stands for the material derivative.

The deformation gradient may be split Into its elastic and Its plastic

components in the following manner:
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fc = GaB G • GF6G

Er
Po • f._
.r

a . Get3 G • GT6 G

E P

(f-1 e -I r)r (f ) .-t

(3.4.6)

The use of capital greek subscripts and superscripts (GBT) denotes

parameters belonging to a flctltlous intermediate state, defined by a

fictitious reverslble process with frozen internal variables, which is in

general incompatible. The circumstance of the non-contlnuous configuration

in the unstressed state has been observed by Sedov38, who points out that

convected coordinates, as used herein, become non-Euclldean in thls

configuration.

llmmmlmiMll

iailkl slate

; fattitimr,me_tol_tc.t

EtNI °S_O

Fig. 3.1 - Definition of Fictious Reference State
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This multlplicative splitting of the metric change in the convected

coordinates leads to an additive splitting of the deformation rate

according to

E PE
o . o )r } , s_ '/,l(f -1 ° (?)_.r Ed_, s_ ',',{If-I) r C? .., )_ fr} .

E P

E E ato: 41.6

E P

', dy + d.y

3.5 Elastic Deformations

(3.4.7)

The present study is concerned with the structure of the constitutive

relation of an elastlc-viscoplastlc (elastic-plastic) medium. The term

elastlc-viscoplastlc means that the viscosity does not intervene in the

elastic domain whose boundary, in particular, is well defined at every

stage of the deformation. For simplicity we further assume that the

thermo- elastic behavior of the body is isotroplc and unaffected by

inelastic deformat lon in the sense that the material

constants characterizing the thermo-elastic behavior are independent of

inelastic deformation.

It is convenient to work with the Kirchhoff stress tensor, T, in the

current configuration, obtained from the Cauchy stress tensor by scaling

A PO o a

TB " _ OB " Jo B (3.5.1)
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where p denotes the current mass density, Pc the mass density in the

initial state, and J the absolute determinant of the deformation gradient

at the current configuration.

The co-rotatlonal stress rate also referred to as Jauman stress rate

(see Section 2) will be

V

S . "S * S 0_ _ S
08 o. B d_ _ - d 8 oy

V

TB _B * dv 8 - d 8 T_

(3.5.2)

From Eq. (3.5.1), the following relations between the various rates of

Kirchoff stress and Caushy stress are obtained

•_ Po -_ Y a

T8 P oB Jd.y o B

V Pc Vo._o:.TB p "Y

(3.5.3)

If a rate constitutive law is postulated between £ and d in finite

inelasticity theories, then a potential does not exist, which is necessary

in the variational or thermodynamlcs-based formulation of the problem. The

basic difficulty lies with the d.Y-term. This is remedied by postulating a

constitutive law between $ and d.

Thus, we can obtain a unique relation between the elastic deformations

E

• a s and the temperature,represented by f_ , the Kirchhoff stresses, T_,

T85,86:
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E E E
f., .,(,.,,T) ° ,,L6

This function may be transformed into an incremental relation by

differentiation with respect to time. This leads to a general expression

of the form

E E V

_- ° ° _' , d_} (3.5.5)d7 d_, {T,V, Ty, T, T, G¢_.¢

From Eq. (3.5.4), we see that the total deformation rate enters the

incremental form of the thermo- elastic stress-straln relations.

Therefore, the thermo-elastic deformation is not independent of the

inelastic deformation occurring at the same time. This follows from the

fact that in the integrated form of the thermo-elastlc stress-straln

relations, Eq. (3.5.4), the stresses and the strains are referred to the

deformed state of the body.

In view of the present discussion and the discussion in the previous

subsections, the hyper- elastic behavior described by Eqs. (3.5.4) and

(3.5.5) will be replaced by a hypoelastlc law. The hypoelastlc law Is a

path-dependent material law, since it cannot be expressed in terms of an

initial and a final state; it depends on the path connecting these states.

Otherwise, if we did not make such a change, it would be necessary to

retain the finite deformation measure in the constitutive law. For small

elastic strainS, there is practically no difference between hypoelastic and

hyperelastlc laws, as shown, for example, by Lehmann 86.

The above could be illustrated by the following example. From the

• frequently used elastic stress-straln relation

E

% - %I% - )_} -

S o} • a(T TO 6 ct (3.5.6)
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we get

Ea I {symEE_ (1.).61

which may be replaced by

and

E E

_ )} •

• V VB •
E I{T_ V _ a aT udy - 2---G - 1_v TB 67} + _ 6y 6y

We assume that inelastic deformation occurs if and only if

T, k, , u_,..., AaB )- 0F(T 7, "" Y6' """

V

aLF a aF _ > 0

for elastic-plastic material,

(3.5.7)

(3.5.8)

(3.5.9)

or

a aB )F(TW, T, k,..., e_,..., A_6,... > 0 (3.5.10)

for an elastlc-vlscoplastic material.

The function F represents the yield condition which bounds the domain

of pure thermo-elastic behavior, in the ten-dimenslonal space of stress and

temperature. The inequality, given by the second of Eqs. (3.5.9), is the

loading condition. The actual form of the yield condition for a given

material is determined by a set of so-called internal parameters, which are

scalars and/or tensors of even order. The current values of the internal

paramters depend on the initial state of the material and the history of

the thermo-mechanlcal process.

3-6 Thermodynamic Considerations

Restricting ourselves to elementary processes, we need not analyze

whether the applied heat arises from heat conduction or from heat sources.

For the same reason It is not necessary, in our case, to introduce the
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temperature gradient in addition to the temperature, and the body forces in

addition to the stresses.

The first law states, under our simplifying assumptions, that the rate

of the specific internal energy, O, is the sum of the rates of the specific

mechanical work, W, and the specific applied heat, q:

The rate of mechanical work Is given by

(3.6.1)

1 T_ d_ (3.6.2)

and may be split into an elastic and an Inelastic part according to Eq.

(3.4.7),

P E I

I o ;

D
e

The rate of inelastic work must also be split into a part, W, which is

S

dissipated at once, and into another part W, which represents changes in

the internal state. Thus,

I P S D

. I___ d_ . _ •
Po

D

Only W enters the entropy production

D

_ _ •I ÷ W

The second law of thermodynamics requires

(3.6.4)

(3.6.5)

D

> 0 (3.6.6)

We use as thermodynamic state variables the elastic strain,
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E
represented by f_, the absolute temperature T, and a numberof other

A_ ), which maybe scalars andinternal state variables (k,...,u_,..., ...

E
a

tensors of even order. The choice of f> and T as state variables is based

on the fact that in pure thermo-elastlc deformations, both quantities form

a suitable set of thermodynamic state variables. The plastic strain and

the total strain are unsuitable as state variables because, in general,

they do not uniquely define the state of the material. A conflicting point

of view has been expressed in Refs. 87-89. The remaining state variables

are added for the sake of the description of the changes of the internal

structure of the material.

The specific free energy (Helmholtz function), ¢ , given by

¢ - U - Ts (3.6.7)

must be a unique function of the thermodynamic state variables

E

¢- ,Cf ,T,k, A (3.6.8)

Since the elastic part of the deformation, according to our assumptions,

does not depend on the plastic deformation, we may divide the free energy

into two different components, as

EE S

-,(r, ,(T, (3.6.9)

E

where the first component, ¢ ,refers to the elastic deformation and the

S

second, ¢ , to the changes of the internal state.

From Eqs. (3.6.1), (3.6.3), (3.6.4), (3.6.5) and (3.6.7) we derive
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E S

Also, from (3.6.9), we obtain

(3.6.10)

E
E E S

af_ f_ + aT

S S S

V a_ V_8 +
(3•6.11)

By comparison of these last two equations, Eqs.(3.6.10) and (3.6.11), we

may conclude that

E S

s- - _(_+ $I
aT

S
S

I _ •..

S V
S V a_ oB

, a--..9--¢ o_ + ... • o---.--._ A.y6 ...

ao_ aA_6

(3.6.12)

£

A= BB
"rc Po f_ a...__B

For irreversible processes, this scheme of description has to be

completed by some statements about the dependence of entropy production on

the thermo-mechanlcal process• Under our assumption we need only deal with

entropy production by dissipated mechanical IWOrk, in connection with

inelastic deformation. Thus, we assume, in general

where

16
D o8 T_ d8 > 0 (3.6 13)

I C_ 0 •
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E
C°BY_- C_(f e_,T, k,...e_,... AeBIY6 (3.6.14)

Eqs. (3.6.12) and (3.6.13) are the governing equations for non-lsothermal,

elastic-inelastlc elementary processes. The specific free energy ¢, which

determines the non-disspated work of the thermo- mechanical process, and

the quantity CG8 which governs the entropy production must be specified_6 '

according to the material behavior.

3.7 Elastlc-Plastic Model

Elementary processes of elastlc-plastlc bodies may be considered as a

sequence of equilibrium states, at least as long as the rate of deformation

is moderate, so that the specific free energy is well defined in each state

of the processes. We consider a simple example of Isotroplc behavior. In

this case, the state of hardening can be described in the first

approximation by a scalar state varlable (beside the temperature). In

order to simplify more, we assume here that the hardening is independent of

temperature. Then the free energy can be written in the form:

E EE S

- T,h2J-, ¢(fy,T) + ¢[h2) (3.7.1)

For the work during hardening it follows that:

S S

d_t $
S..dh

(3.7.2)

S S S

- ¢(h 2) - ¢(h 2}
0

Provided now that there exists a uniquely defined relation (depending only

D S

on h2) between the dissipated energy W and the work during W - i.e.
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D s [h2o)sw- c(h2) _ (h2) - c _(h2o)

then we have

P S D S

. _ + _ . d {[1 ÷ c[h2)] ¢(h2)_ _2

dh 2

P S

- , _[h2o)w- [I• c(h2)]_(h2) [I c(h2o)] s

, (3.7.3)

(3.7.4)

P S D

The plastic work, W, as well as its parts W and W can, on the assumption

made here, be represented as functions of the state variable h2.

We can introduce a yield condition of the form,

FC_, k2) - o, (37s)

where k2 is here a parameter characterizing the hardening. Since, on the

other hand, the boundary of elastic behavior in the stress space can depend

only on the state variable k2, then k2 is a function of h2, or

k2 - k2(h 2) = k2(_) (3.7.6)

If the hardening is isotropic, in a more restrictive meaning, theholds.

yield condition does not change its shape during plastic deformations, we

have to put

FC,_,k2)- f{,_)-k2 - 0 (377)

Plastic deformation occurs if Eq. (3.7.7) holds and the loading condition

is satisfied at the same time- i.e.,

V

_T_ _ > 0 (3.7.8)
T

S

We can use the state variable h2, for instance, by letting h2 - W.

Then it follows from Eq. (3.7.2) that
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S 2
¢(h )- h2 (3.7.9)

Starting from the initial state h2 - 0, we get from Eq. (7.3.4),
O

P

W : [I * c[h2)] h2 (3.7.10)

P

On the other hand, W can be represented from the yield condition, Eq.

(3.7.7), as a ftmctln of k2:

P P

W - W(k 2)

From Eqs. (3.7.10) and (3.7.11) we can determine:

h 2 = h2(k 2)

In the case of linear hardening with

(3.7.11)

(3.7.12)

we have

P

k2 " k2o * 2B Po W (3.7.13)

P s,

I (k2 - k_) (3.7.14)
W - 2Bp--'-_

By putting c(h 2) - const. - c, thus assuming a constant relation between

work of tmrdening and dissipated energy, it finally follows that

k2 _ k2

S_h 2) - h 2 - (3.7.15)O

2BPo(I+c)

For anlstroplc behavior and again, provided the plastic deformations

are independent of temperature, the state equation for the free energy may

be assumed approximately i.e. in the following form:
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E S
aB) (3.7.16)=_(_,T1*_(h2,o_._6

3.8 Elastic-Viscoplastic Model

Thermo-mechanical processes in elastic- viscoplastlc bodies cannot be

considered as a sequence of equilibrium states, even in the case of the

elementary processes, considered here. Elastic-viscoplastic deformations

are associated with non-equilibrium states. One consequence of this fact

is that we may get a continuation of a process without any change in the

independent proces variables. This occurs, for example, in the case of

creep with constant stress and temperature or in the case of an adiabatic

stress relaxation under constant strain. In such cases, the body moves

from a non-equilibrium state to an equilibrium state.

In order to establish the constitutive relations for

elastic-viscoplastic bodies, which in the limiting case becoming

elastic-inviscidly plastic, we adopt the usual assumption that the

stresses, which produce the inelastic deformation, may be expressed as the

-u
sum of the so-called athermal or inviscid stresses, _ , and the viscous

i

overstresses T_:

,_-,-_,_-_ (,_ ,_) (3.8.1)

This assumption, by no means, detracts from the "unified" concept. The

rate-lndependent limit of visco-plastic constitutive relation was recently

discussed by Travnicek and Kratochvil90. Hence, the total work rate can be

partitioned in the following way:

E P V

E p_
I a I -.a

I
(3.8.2)

* p
1 o

-- 't_ d"_
Po o
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The viscous part of the work is completely dissipated. Thus, we may write

V D
v

W= W (3.8.3)

Regarding the plastic work, we have already stated that one part is used

for changing the internal state and only the bemaining part can be

considered to be dissipated. Therefore, we must write

P S D
• • •P

W- W+ W (3.8.4)

So, we finally obtain

E S D D
p v

W I W • W • W _._ (3.8.5)

D

We have assumed that the changes of the internal state of the material

can be regarded as a sequence of equilibrium states. Then, the specific

energy is well-defined in each state of the process and we may take the

usual overall statement concerning the specific free energy. In so doing,

S

however, we must be aware of the fact that into the part, W, of the plastic

P
• --o

work rate, W, only the athermal stresses T_ enter, since only these

stresses are involved in the plastic mechanism• For the same reason, we

can only introduce the athermal stresses _ into the statement concerning

_P
the dissipated plastic work W. On the other hand, we have to add the

dissipated viscous work W to in order to obtain the total rate of

dissipation. The different mechanisnms for determining the total

dissipation and their coupling have been discussed by Perzyna 91 .

We now consider an example in which the specific free energy has the

following form
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E E S
•, _ If°,, T), ,[T, k, o_)

EE y

. ¢(fo_ T)+ k + f(T)+ ho: a"Y' 0

(3.8.5)

In this equation h denotes a constant with the dimension of a specific

energy llke the variable k and the function f(T).

Furthermore, we assume that the dissipation is given by

D
.P

W

D
V

1 {(_ - c Poh o°'P"
" p'-'-_ v jdo

P

- I--{_ - _,,}d"
Po °

where _ < 1 and c denote constants. This leads to

(3.8.6)

D D
D p v P I

• . . •- -(_- ) - +wW W + W 1 _ ch o_°
!

(3.8.7)

Hence, we obtain

S I D P

w- w- w - (I- _1w • _ oho_d"_ (3.8.8)

On the other hand from Eq. (3.6.12) and (3.8.5) we have

S

W = k + 2h o_ o°

Eqs. (3.8.8) and (3.8.9) are compatible, for instance, if we put

(3.8.9)

P

- (_- {)w (3.8.10)

and

V P
o -V_d "Y
0 0

(3.8.11)

P

From Eq. (3.8.10) it follows that, in our case, the plastic work, W, is
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equivalent to the thermodynamic state variable k. This is still true if we

take _ as a function of k. But it does not hold in the general case when

also depends on the other state variables T and a_. Eq. (3.8.11) shows that

only in a very special case, a very unrealistic one, the state, variables

a_ are equivalent to the plastic deformation.

From the thermodynamlcal considerations, it follows then that we may

introduce the quantities k and h_ , defined by Eqs. (3.8.10) and (3.8.11),

P

or any other equivalent set (W, COohe_) , as internal variables into the

corresponding constitutive equations of the process description.

The constitutlve equatlons themselves are not yet determined

completely by Eqs. (3.8.5), (3.8.6), (3.8.10) and (3.8.11). These

equations only give the restrictive frame for the formulation of the

constitutive equations. We may derive a complete set of constitutive

equations, which is compatible with this frame, by the following further

assumptions:

a) the yield condition is of the form,

C -o 0o 0o - o

where -_t_denotes the deviator of the Kirchhoff stresses T_

b) the plastic deformation obeys the so-called normality rule,

PA . __
dc _ dF , (3.8.13)

c) the relations between the viscous stresses and the inelastic deformation

rate are of the form,

p *

o i o ' (t_ _] (3.8 i_)d_ - --_n t_ - 2--"_ - t_

d) the quantities _ and c are constant.

-e
We can elimnate the athermal stresses _ (which are not state
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variables) from the equations of evolution by considering that the

inelastic deformation can be expressed in two different ways. In one, the

plastic mechanism is considered, and in the second, the viscous mechanism

is considered. FromEq. (3.8.12) we then obtain,

PA er--_

dC = 2ALt; - c PC ho_J (3.8.15)

while from Eq. (3.8.14) we have

P

e 1% " 2-q

2n

(3.8.16)

P
e

By comparing these equations for d_ we get

1 - c PO PO
"Tn I 2 )Y'- 1}

g

(3.8.17)

Following the course of the process in each state, the internal parameters

P P

and o_ and therefore also g2 . g2(W ' s;) are known. Thus, we may

calculate _ from Eq. (3.8.17), and then all the other needed quantities

P

such as and d_.

This procedure fails at the point of transition from the elastic

domain to elastic-viscoplastic deformation domain, since in this instant

P
@ --e e

t_ = t_ and therefore _ as well as d_, become zero.

P

V

may calculate de from the following considerations:

But In thls case we

From Eq. (3.8.14) we

P
e e _

obtain, because of d_ - 0 and t_ = _ ,
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V

(3.8.18)

On the other hand, we derive from Eqs. (3.8.14) and (3.8.15), observing

that ] - 0 and t_ - ,

V
V

P V

2"r_to o I t0 - -'od° - t_- COoh%) - 2--_( _ ty) (3.8.19)

From Eqs. (3.8.19), after multiplying by [t_ - CPoh o:), we obtain

V
., V

O
(3.8.20)

Together with Eq. (3.8.18) this leads to

;- 8,,_2
(3.8.21)

.. V V

o from Eq. (3.8.19), _ from Eq.Having the value of A, we may calculate dx

(3.8.19), etc.

3.9 Some Complementary Remarks

Many thermodynamic considerations of non- isothermal,

elastic-viscoplastic deformations refer essentially to the general

fundamentals, which must be observed in describing such phenomena as

thermo-mechanical processes, and then discuss in particular which

restrictions follow from the second law of thermodynamics. Only a few
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papers attempt to describe completely such processes by stateequatlons.

Most of these papers introduce plastic strains as thermodynamic state

variables. But one mayconclude from the consideration of the phenomena in

the crystal lattice (dislocations, for example, which have completely

passed through the crystal produce plastic strains but no changes of

state), as well as from phenomenological observations (different states of

hardening can belong to the same plastic strains), that plastic strains in

general cannot be regarded as state variables. Furthermore, all these

papers consider the plastic work as completely dissipated. This, however,

is in contradiction with experimental results, from which it emerges that

one part of plastic work is used for producing states of residual stresses

in the lattice, which, when phenomenologically considered, cause hardening.

The results, in the work presented here, can be extended to more

complex constitutive equations by introducing more internal parameters or

state variables, respectively. We may extend our approach to more general,

anlsotropic hardening materials by assuming (see Eq. (3.8.5)), for example,

that

E E S
a oB

o T) + ¢(T, k, o_, A_6)¢- ¢ (f_,

E E aB _ 6

(3.9.1)

Also, it may be more advantageous to replace the assumption in Eq.

(3.8.13) for the plastic deformation rate by

p ,;

a ,_ g_._.LF oB v¢
(3.9.2)

This form of this model appears to be more suitable for representing some
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experimental results in whlch second order effects and some devlations from

the normality rule have been observed. Sometimes the normality rule is

considered as a fundamental law based on an entropy production principle.

But we should keep in mlnd that, since not all of the plastic work is

dlsslpated, we cannot expect the total plastic deformation rate to obey the

theory of plastic potential, even though the mentioned principles of

entropy production are correct.
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4. APPLICATION TO PROBLEMS IN EXTENSION AND SHEAR

4. I Introduction

One of the most challenging aspects of finite strain formulations is

to locate an analytical solutions with which to compare a proposed

formulation. Typically, as a first problem, a large strain uniaxial test

case is analyzed. The uniaxial tensile test is a common and simple way to

characterize the stress-strain relation for a given material, since the

tensor components used in the constitutive relation will have to be related

to this uniaxial test.

In Subsection 4.3 an example how the general constitutive relations

developed in Section 3 can be applied to a particular material is shown.

This material law is applied for all the other examples.

The case considered in Subsection 4.4 examines the rate-dependent

plastic response to a deformation history that includes segments of

loading, unloading, and reloading, each occurring at retying strain

amplitudes, for a bar. These are surely important problems to be

considered; however, they only represent a partial test because the

principal stretch directions remain constant. Finally, a problem which was

discussed by Nagtegaal and de Jong 92 and others 93 as a problem which

demonstrates limitations of the constitutive models in many finite strain

formulations is the simple shear problem. This problem is solved as the

last example.
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4.2 - Uniaxial Irrotational Deformations

The uniaxial tensile test is a common and simple way to characterize

the stress-strain relation for a given material. Since the tensor

components used in the constitutive relation will have to be related to

this uniaxial test, and also to gain a physical understanding of the

quantities involved in the analysis, it is both useful and instructive to

express the tensor quantities previously discussed in terms of the unlaxial

tension test variables. A homogeneous, uniaxial, irrotational deformation

will be considered here as a first example.

If the original length of the bar is £o and its present length is £,

then, the transformation between the fix coordinate system and the material

coordinate system is

I £ I
X = -- u (4.2.1)

o

1 9"o 1
u - -_ x (4.2.2)

and the metric is

. g11 o o Ig11 " G11 " GI - I
(4.2.3)

_2

Gll - ?
0

2
9.

o

Gll " ?
(4.2.4)

• from Eq. (3.4.4) we find

and

(4.2.5)
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_2
=_Ro

(f-1)11

•The component of the velocity vector in the fixed system are,

(4.2.6)

v =Vl =T
o

(4.2.7)

and in the convected material coordinate system they are;

v =_ Vl =7
0

(4.2.8)

The components of the deformation rate in the material system are

then,

_2

£ _ d11

dl 1 = -'_ " £3

(4.2.9)

d 1 = _

It is worth while to notice that the material rate of a logarithmlc strain

is equal to the mixed components of the rate of deformation tensor.

The unit normal vectors to the deformed and undeformed areas are one

and the same unit vector directed along the bar axis, since the deformation

is unlaxial and irrotational. Therefore,

t
1 o _.

v - _ Vl = T (4.2.101
o

The force transmitted across the cross-sectional area of the bar is dP

dp1 o 9.
" "--'E- dP dP1 = T dP

o

The corresponding traction vector components are:

(4.2.11)

TI = P o
_A £ TI =

P _,

XA
(4.2.12)
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The components of the Cauchystress tensor in the material system are

obtained as:

1 P p P £

°1 = A" = Po Ao £o

£2
11 o P _p__ P £o

£2 A Po Ao £
(4.2.13)

°11
£2 p _2_ P _3

_2 A Po A o £3
o o

and the components of the Klrchhoff stress tensor are:

1 Po P
w

"h" p 7"
P £

A £
o o

£2 JL
11 Po P o P o

T == ==

p a _2 A°
(4.2.14)

Po p £2 p g3

_11 " p A _2 " Ao _3
o o

Observe that the unlaxlal component _I is the stress actually computed

in most unlaxial tension test and is also inaccurately labeled some times

as "true stress", since it is usually assumed to be equaI to the "true

stress" because p - Po is satisfied almost identically for most metals in

the plastic region.

The Jaumann derivative of the components of the Cauchy stress tensor

In the material system Is:
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dJ 1 Vl ,1 •
d'E(°1) _ °1 " °. 1

1 1 1 1
* d 1 a 1 -0.1 d1

" -ZE

_'11 .11 1 all , all 1 .11 1 11
o - a + d1 d 1 .. a + 2 d 1 (_

_2 _2 _2

d Po),2_ P o o d (P)" -_ {_ _2 _ (_ _1 - _ _t

V

1 _ °1 1 Iall " ;11 - dl °11 1 dl = °11 - 2d Oll

d p_2 i P_). _2 d {P)
o o o

The corotationl (Jauman) rates of the Kirchhoff stress components can be

similarly obtained:

Vl d {,P _}
_rl " d'-E' A _,

o o

_2

V11 0 d {P _ )

_2 dt Ao _o

v _2 d (,P _)
"rll _2 dt Ao _o

o

As previously noted in Subsection 2.5, the rate of the internal power

can be expressed as a function of the Jauman derivative of Caushy stress

and the rate of deformation tensor as in Eqs. (2.5.10) - (2.5.13).
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4.3 - Example of Constitutive Relations for an Isotroplc Hardenin_ Material

For a carbon steel (45(DIN 1720) in a pure tension test at a moderate

temperature and strain rate, we find the material behavior which is shown

in Fig. 4.194 .

w

K

_0

2_

//

20"¢

-- :o_'c

1 -_o*¢

0
0 O.J A2 _) O_ AS OJ; 0,7

Fig. 4.1 - Carbon Steel C 45 in Tension

From this we may derive the stress-straln-temperature relations for loadlnE

in pure tension in the form

o - o(e, T) (4.3.1)

For our purpose it is more useful to write this relation in the form
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P

P cI(T) W

o = o(W, T) = p + Co(T) (4.3.2)

c2(T) + W

In our special case we get

cI(T) - 72.42 -36.03 • I0-3T kp2 '
mm

c2(T) - 7.35 - 8.04 • IO-3T kP2, (4.3.3)

Co(T) = 47.41 - 38.9 • I0-3T kp 2 '
B1m

wlth T in °K.

We may consider the carbon steel approximately as an isotropic

work-bardenlng material obeying the v. Misses-Hill yield condition.

Furthermore, we assume that a constant ratio of 90% of the plastic work is

dissipated. With these assumptions we get the following general

process-description for the material under consideration in this example

(see Section 3),

independent process variables: T8, T

dependent process variables:

P P

(a) W or k2(W, T), respectively

(b) f8' ....
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yield condition:

P P
o t_ _ k2(W,T) . O,

P

cI(T) W
P 2 {Oo(T) + p}2kR(w,T) =

c2(T) ÷ W

loading condition:

a__.Lv v ak 2° aF_- 2t._t_ - -- _ > o
a-r_ T.y * -_ o aT

elastic strain rate:

E V V6

d_, = 2"'_ 1 _" v 6._

(4.3.4)

(4.3.5)

(4.3.6)

plastic strain rate:

when Eqs. (4.3.4) and (4.3.5) are fulfilled:

Po 2t_ v6 ak2 "i"
am. ; a._L. % - -'E"

P

aw

(4.3.7)

otherwise:

P

d_ = 0 (4.3.8)

rate of plastic work:

P P

= "r_ d_' (4.3.9)

rate of applied heat (approximation; the exact formulation is given later

in Eq. (4.3.17)):
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P

with _ - 0.9 - const.

(4.3.10)

- 465 _ (heat capacity)c

In the process description the hardening parameter k2 depends uniquely

P

on the plastic work W and the temperature T. This fact leads to the

following approach for the corresponding thermodynamics relations (see

Subsection 3.6) to make sure that the plastic work is equivalent to

thermodynamic state variables:

free energy:

EE S

o T) + h with h- ¢ ; (4.3.11)

entropy production:

D P P

- - (4.3.12)

From thls approach and with connection with Eqs. (3.6.4) and (3.6.12), we

get

P S D P

1 - _(h)

This means, as required,

P

h - h(W)

In our special ease, it holds that {(h) - 0.9 - const.

S

latent hardening ¢ = h becomes

P P

h I (I-{) W - 0. I W

(4.3.13)

(4.3.14)

Therefore the

(4.3.15)
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From our approach, Eq. (4.3.11), we may also derive for this case, the

exact relation between the rate of applied heat, the time derivative of

Using the Eqs. (3.6.5) and (3.6.12)temperature and the deformation rates.

we get

D P as as

v _a2¢ T + ah aT
- - T{ V f_ + aT2

af_ aT

(4.3.16)

ile.

V

p la2_ s s

aT2 E f_

af_ a T

In this equation

(4.3.17)

E E

a T)- T a26 - C(f v,
aT2

(4.3.18)

E P
a a = O) We mayrepresent the heat capacity at constant strain (dy - dy .

consider this heat capacity as constant:

E
O T) = C.C(f_,

(4.3.19)

Furthermore, we know from experimental results that the second term on

the right-hand side of Eq. (4.3.17) can be neglected in most cases. So we

can replace Eq. (4.3.17) by
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P

* _ W - CT (4.3.20)

This is identical to the Eq. (4.3.10) whim we used as an approxlmatln in

the process description.

4.4 - Unlaxlal Cyclic Test

The formulation described in Subsections 4.2 and 4.3 was applied to

the ch_acterlzation of isothermic T - 40Oak uniaxial cyclic response to

loading program of variable strain amplitudes at a strain rate of 100 S-I

(Fig. 4.2(a)).

The dotted lines in Fig. 4.2(b) were obtained under the ass_ption

that the total plastic work was dissipated. Due to the viscid effect, the

rate-dependent stress-straln c_ves (solid lines) _ve continuous slopes at

the shifting points. Note that the transient hardening causes the

subcycles not to be closed.

001 /

V v
-0 01

I
Fig. 4.2(a) - Loadin_ (_ - 100 S-I)
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Fig. 4.2(b) - Stress-Straln Response
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4.5 - Simple Shear

We take the same material as in subsection 4.3 and consider simple

shear process as shown in Fig. 4.3. We denote this material as material A.

The processes will

--IG n

Gvz

x-"

/

I
..-_.j

;I
/

/
/

/
!
f

m

= tany

/
/

/
/

/
/

/
/

/
/

I
/

• X t

Fig. 4.3 - Simple Shear

be carried out, on the one hand, isothermically and, on the other hand,

adiabatically. We find the solution of the problem by numerically

integrating a system of first-order differential equations originating from

the Eq. (4.3.4) - (4.3.10). In the first case (isothermic process), the

o are given, and in the secondtotal strain rate d_ and the temperature TO

case (adiabatic process) the total strain rate and thevanishlng of the

applied hea{ are prescribed.
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For comparison, we introduce, furthermore, a theoretical material

whoseyield condition is unaffected by temperature. This means, for this

material, the hardening parameter k2 is

2 P
k2 - k (w, To).

In fsothermic processes this material (denoted as material B) shows

the same behavior as material A. But in adiabatic processes we have

differences. For material A, the temperature influences the yield

condition as well as the elastic part of deformation. For material B, only

the elastic components of the deformations are changed by temperature.

Regarding this we must distinguish three cases:

(I): isothermlc processes with material A or B,

(IIA): adiabatic processes with material A

(hardening rule depending on temperature),

(liB): adiabatic processes with material B

(hardening rule independent of temperature).

The resuls for the shear stresses and the temperature are shown in Fig.

4.4. We see that the differences between the shear stresses in the

isothermlc and in the adiabatic processes are mainly influenced by the

dependence of the yield condition upon temperature. The differences betwen

the cases (I) and (liB) are negligible, but not the differences between IIA

and IIB. It should be remarked that in the case (IIA), we get a maximum

shear stress for v - 0.87. So for larger deformation we find in this case

a softening effect due to the increasing temperature. With respect to the

temperature the differences between the adiabatic cases, (IIA) and (liB),

are rather small, since the differences in the plastic work, in both these

cases, are not so important.
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The second-order effects are more influenced by the temperature than

the first-order effects. This can be see from Fig. 4.5 The effects are

partially" changed in the opposite direction (see stress _11)- This is due

to the strong influence of the temperature on the elastic deformations. We

may conclude this from the fact, that the differences betweenthe casses

IIA and IIB are less than the differences between I to IIA or IIB,

respectively.

From other experiments, however, we know that the observable

second-order effects cannot be explained by the influence of the elastic

part of the deformation alone. We get more realistic result whenwe use

stress-strain relations derived from the Eq. (3.4.2) with a small

correction concerning the theory of plastic potential. In this case the

difference between the second-order effects in Isothermic and in adiabatic

processes may be slightly less. But in any case, the influence of

temperature on second-order effects is more important than the influence on

flrst-order effects.
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5. SHELL FORMULATION

5. I Introduction

A basic framework for nonlinear or bucklinE analysis of thin shells by

the finite element method is supplied by an Incrementatlon of variational

principles. Most of the nonlinear theories of shells are Lagrangian in

character in that they employ as a reference eonfiEuration the undeformed

state of the structure. In the construction of these theories it is common

practice to start with a set of strain measures and strain-displacement

relations (which are usually approximate in some sense), to introduce

conjugate stress quantities, and to then postulate a variational prlneiple

of virtual work in terms of the variables of the theory. The next step is

the incrementation of the principle of virtual work, which introduces

further approximations and inconsistencies into the theory.

A new procedure free from all the above cited limitations for the

analysis of finite deformations, finite rotations, bueklinE and

post-bucklinE behavior of arbitrary shaped shells of elastic or inelastic

materials is presented in this Section. This formulation is a complete

true ablnlto Incremental theory.

Subseetlon 5.2 deserlbes the geometry and the klnematles of a surface.

This formulation is used in the next Subseetlon whleh deserlbes the

geometry and the klnematles of the shell. The incremental principle of

virtual power and incremental equations of equilibrium are introduced in

Subsection 5.4.
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5.2 Geometry and Kinematics of Surface

The development of differential geometry of surfaces has been

presented in numerous books, e.g., McConnel [45] and Sokolnikoff [44].

Following the notstlon of Ref. [44], a short and summarized development

is presented herein.

Surface s imbedded in three dimensional Euclidean space can be defined

by:

I i
x - x (u a) , i = 1,2,3 ; a- 1,2 (5.2.1)

where x i are the coordinates of a point on the surface in the three

dimensional system and u are the coordinates on surface s.

The covariant components of the metric tensor of the surface (or the

first fundamental form of the surface) are:

xiaa8 " glJ a
(5.2.2)

The contravariant components, aa8 , of the metric tensor are defined by:

- a 87 67 (5.2.3)
aa8 a

A unit vector normal to the surface can be defined as follows:

where gij k

surface.

I cab xj x_ (5.2.4)ni " 2 ¢ijk a

and caB are the permutation tensors for the space and for the

i

The total covariant derivative of assp and use of the equality xa; .

bring to the conclusion that:

- x
1

8;a
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i J 0 (5.2.5)
gij xa;8 xy =

i
The implication here is there xa;8

i
is orthogonal to xy and consequently to

the surface. Thereby, a tensor ba8 must exist so that:

i i

Xa; B = ba8 n (5.2.6)

Eqs. (5.2.6) are known as the Weingarten equations. With the help of

tensor b 8 one can build the second fundamental form of the surface. The

total covariant derivative of the unit normal tensor is obtained by

differentiation of the normality conditions:

yielding

i nj = O, (5.2.7)
glj x

i bY i
n - xy

The Integrablllty conditions on xI are:

(5.2.8)

@2 x i @2 xi
I

_u_ Bu s Bu _ _ua

(5.2.9)

and they lead (from the covariant derivative of xi 8) to:

i - xi = R6. x_ (5.2.10)xa;BY a;_B aBY '

where R 6 is the Riemamn-Christoffel tensor of the surface given by:
.aSY

R6 @¥67 _Y6_8 .fc y6 _ ye y6 (5.2 11)

.ctBY = @u8 _)uY + aY EB oLB eY
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RoBy6= aac RE.BY6 (5.2.12)

Substitution of Eqs. (5.2.6) and (5.2.8) into Eq. (5.2.10) yields the

Gauss-Codazzl equations :

boe;_ - bo_;8 = 0 (Codazzl) (5.2.13)

bp8 bay - bpy bob = RpoBy (Gauss) (5.2.14)

The Gausslan curvature of the surface k is defined by:

k R1212 1 eo8 Y6
= _ = _ Rosy6 _ (5.2.15)

- laa81 and ¢o8 are permutation tensors of the surface (E a8 = eaS/_)where a

or in alternate form:

K . Ibm8laa_ .Aba (5.2.16)

Another important invarlant H, the mean curvature of the surface, is

defined by:

1 aO8 (5.2.17)
H - _ bog

i
Let us examine for awhile the role of the transformation tensor x . For

any surface contravariant tensor of first order t ° one may write

i t _ T ix - (5.2.18)
O

Therefore, the components of t_ are transformed to the space system. A

similar transformation for the covarlant tensor is by no means obvious
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because the eq. (5.2.1) is not affine and there is no meaning to write u =

a by:ua(xi). First, Let us define the inverse transformation tensor L i

a J aaBLi = glJ x (5.2.19)

This definition, Eq. (5.2.19), is obtained by multiplying Eq. (5.2.18) by

Then,

(5.2.20)

glJ xJB and by assuming that T i has only surface components.

a Ti ta
Li =

obeys the following rules:The inverse transformation tensor L i

gij Li L_ - a a8
(5.2.21)

xi . _ (5.2.22)
Li 8 68

ni 0
L i

Moreover, it can easily be verified that:

(5.2.23)

Lal;8 = bsa nl (5.2.24)

_ n i (5.2.25)
b8 " - Li ;8

The problems with the transformations, depicted by Eqs. (5.2.20) and

(5.2.18), stems from the limitation on tensor T i to have only surface

components. From a general tensor T i only the surface components are

obtained by those transformations (in the case of higher rank tensor a

little bit different component are lost). In order to overcof_e this

problem, we define the surface system slightly different and add a third

dimension by a unit vector normal to the surface. This system will be
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called latter on T-system.

are defined as follows:

The transformation tensors for the new system

and accordingly,

xF a

ni ; F - 3

(5.2.23)

f|L_ ; F-1,2

LII" "i (5.2.24)

In i ; r - 3

The components of the covariant metric tensor for the new T-system are

i xJA (* 8 ni nl 6_ 6_aFA " gij XF - at, 8 61. 6^ +

Similarly, the components of the contravariant metric tensor are:

(5.2.25)

rA r A a_8 6F A + nl n i F Aa , glJ bl Uj - _ 68 63 63 (5.2.26)

Now, the formal transformation of any tensor from the space system to the

new _-system can be accomplished by:

or

. i T o + niT 3 (5.2.27)T i . xiF t r xa

r

T I - L i tr = Lits + ni t3 (5.2.28)

This system, just defined, will be employed in the discussion of shell

structures.

Let us assume now that surface s is deformed in time so that the space

coordinates of a point on the surface are time dependent. Hence instead off

Eq. (5.2.1), we may now write
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i i(ua,t ) (5.2.29)x -x

According to the three dimensional formulation in section two, the x i

system is the system at rest and the us system is the material system (u u

being independent of t). At this stage of the formulation we need to

obtain the time derivatives of all the static parameters defined earlier in

this section.

The rate of change of the transformation tensor x_ is paramount in

the description of the deformation of the surface. Hence repeating the

results of section 2.3 [Eq. (2.3.12)];

Dxq

= _ (vq)+rq vk s vq A vq
D---t" Bua sk x =Ct ;(l " ,(_

(5.2.30)

where the velocity vector in the fixed system is give n by Eq. (2.3.6), or

v l dx.__i.i= _)xi ,= Dx___i.i (5.2.31)
dt _t Dt

However, the components of the spatial velocity vector can be rephrased as

follows,

i i Y ni
v - xy v + N (5.2.32)

From this the expression, V q Is obtained through covariant
;a

differentiation

vi .i Y _ bYW)+nl vY
;a" Xy(V;a a (bya + W;a) (5.2.33)

Comparison of Eqs. (5.2.33) and (5.2.27) is suggesting the possibility of

simplifying the formulation by using the x-system. To accomplish this,

there is a need to formulate an additional parameter, the material

derivative of the unlt vector normal to the surface, n i. By time
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differentiation of gij ni nJ = I, one can come to the conclusion that the

Dn I

material time-derivative of ni., -_ is orthogonal to n i itself and located

on a plane which is tangential to the surface. Hence, one can represent

Dn I
D---_by a linear combination of xj or

DnJ = C(*xj (5.2.34)
Dt (*

i nj = O, and use of
Differentiation of the orthogonality condition, giJ x(*

Eqs. (5.2.30) and (5.2.34) yields the following expression,

V i nj
+ C Y x_ - 0 (5.2.35)

x i
gij ,a glJ (*

Rearranging the terms of and substitution of Eq. (5.2.33) into Eq. (5.2.34)

yield the following expression for Dn--_j
Dt '

DnJD---t- a(*Y[b(*B V8 _ x_= + W;(*] (5.2.36)

In order to shorten the formulation we introduce two new parameters,

_ A VY _ bY W = aY6
.(* = ,(* (* _6(* aY_[v6 (* - b6(* W] (5.2.37)

A
•, vY+ W

Pa by(, ;(*

(*
= aa6p J = ae.6[b Y VY+ a (*Y W y]

Next, the different tensor will be denoted in the _-system.

of the velocity vector, Eq. (5.2.32), can be written as,

(5.2.38)

The components

Vi = x_ V F

Eq (5.2.30), can be extended to:

(5.2.39)
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= Vi = V i _ Dn I 3Dt ;r ,_ _F + D---t6 (5.2.40)

The second term on the right hand of Eq. (5.2.40) stems from the Oefinition

of x_ [Eq. {5.2.23)]. Note that by employing Eqs. (5.2.33), (5.2.37) and

(5.2.38); one can write

Y 3- _- [xi__ ]6r (5.2.41)

It is useful for the forthcoming development to calculate the material

(or r in thederivatives of the inverse transformation tensor L i L i

T-system). By definition through Eq. (5.2.19), and in the _-system, Eq.

(5.2.24), time differentiation yields

DL_ DL_ Dn I r

r
= [-L_ )ay + ni p_] 6 r-m [L_ p Y] 6 3 (5.2.42)

Consideration of the structure of Eqs. (5.2,41) and (5.2,42) suggests the

possibility of simplifying the notation considerably by introducing a new

tensor _r^' in the _-system,. in the following way:

1 DxtA

_r^ = glJ Xr --_ (5.2.43)

A detailed derivation of Eq. (5.2.43), taking into consideration the

defintions given by eqs. (5.2.37) and (5.2.38), shows that,

B
_rh = _o=S6; 6A + _ 3 8+ 0 3 g3 (5.2 44){-Pc) 6r _ + PB 6r 6^ " _r A
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Hence:

and

(x

_r3 = - @3F " - P_ 6F

w33 " 0

Now, we may write Eqs. (5.2.41) and (5.2.42) as follows,

and

DxiF V i = xiA _A;r .r

(5.2.45)

(5.2.46)

(5.2.47)

DL[ . L A _F
Dt i .A

(5.2.48)

In view of these simple expressions, Eqs. (5.2.47) and (5.2.48), one

can appreciate the importance of the introduction of the T-system. It is

worth noticing, at this point, that, although most of the tensor quantities

will be expressed in T-system, the mathemtical operations, like the

material derivative, will be performed in the material system u . This is

done because the T-system is not a true material system, because of the

third direction which is taken to be normal to the surface.

The next step is to calculate the material derivative of the metric

tensor in the x-system, Eq. (5.2.25):

DaFA D i i

-F6- " [gij Xr x^]

Since giJ is independent of time, we have

Data Dx_ XJA+ i DXJA
I gij [ _ X r _ ]

But from the definition of _FA

(5.2.25) we obtain:

(5.2.49)

(5.2.50)

[Eq. (5.2.43)] and from Eqs. (5.2.47) and
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DaFA
" [*r^ ÷ *^r ] (5.2.51)

It is clear from its definition, Eqs. (5.2.43), that _FA is not a symmetric

tensor. The description of the components of CFA in the uu system is

DaFA u B (5.2.52)
" (V 8 + V8; u - 2Wbu8 ) 6F 6A

and the remaining of the (derivative) components, which permit r - 3 or A -

3 or r = A = 3, vanish.

The material derivative of the contravariant components of the metric

tensor is obtained in a similar manner from Eqs. (5.2.26) and (5.2.48);

F_
= - a aA¢[_¢_ ÷ ¥_¢] - (5.2.53)

- - aup aYB(Vp;¥ + Vv;p - 2Wbyp) 6r_ 68A

The derivative of the mettle tensor determinant a = det (aU8), in the uu

system Is obtained by:

Da g @a Ba @au8 Ba Daub

Dt - Bt Ba B Bt @auB Dt

(5.2.54)

where it is recognized that aa8 is a surface tensor so that its material

derivative Is, in fact, a partial derivative.

_a

BauB
is, in fact, the cofactor of auB given by:
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Ba = amB• a (5.2.55)
aaaB

Substitution to Eq. (5.2.514) and rearrangement of the componentsyields,

Da 2aiv_ - Wb = 2a _ rDt ;a

Let us now introduce the rate of deformation tensor, drA , by:

I [_r^ _AY] (5.2.57)drA = _ ÷

and the spin tensor _r^ by

i [_'r^ - 'qr ] (5.2.58)%^ - -_

The rate of deformation and the spin tensors are the symmetric and

antisymmetric parts of _rA" The description of the components of drA is

simple,

a 13

drA - ½[Va; 8 + VS; _ - 2Wba8 ) 6 r 6 A
(5.2.59)

while the description of the components of u from Eq. (5.2._4) is
rA

I a 8 _ a 6_ + p 6_ 6 B
tara = 2 (Va;S - VB;a) 6r 6A Pa 6r 8 ^ =

" _ [Va;B ;a 6r - b,f 6_

÷ Vx _ (5.2.60)(b_ . W S) 6_ 6^

Another important element in the description of the deformation of surfaces

is the rate of change of the curvature, ba8 From the definition of Daft

[Eq. (5.2.6)] we obtain:

i (5.2.61)
bag = ni Xa; 8
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The material derivative of Eq. (7.2.61) is then

DbaB Dni i Dxia;B

Dt = D---_xa;B + ni Dt
(5.2.62)

From Eqs. (5.2.6) and (5.2.36) it is readily obtained that the first right

hand term of Eq. (5.2.62) is zero. In order to calculate the material

i

derivative of xa; B , there is a need to make use of the developed

connection between the time material derivatives and the total covariant

derivatives (section 2.4). Following the derivation there and noticing that

the space is Euclidean results into

i
Dx

_;B V i
Dt ;aB

(5.2.63)

Substitution into Eq. (5.2.62) of the covariant differentiation of Eq.

(5.2.33) and then substitution into Eq. (5.2.13) yields the following

expression for D_B /Dt,

DbaB i bya; 6V'( +Dt - n i V;aB " b_B

or by using Eqs. (5.2.37) and (5.2.38);

V Y + V Y - Y W + W
;a bYa ;B b8 bya ;aB

(5.2.64)

Db:B Y (5.2.65 )

Another important variable, in obtaining material derivatives, is the

i
gradient of the normal vector to the surface, n . Once again from

section 2.4 we have, for Euclidean space;
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Dni
,_ Dni

Dt Dt
(5.2.66)

FromEqs. (5.2.36) and (5.2.38) we obtain:

i

Y x_ + " pY ni] (5.2.67)Dn _ [-P;_D-"t-" by_

The final expressions in Eqs. (5.2.64) and (5.2.65) can be "translated", as

they are, into the z-system (in opposite e.g. to Eq. (5.2.63)):

DbrA DbaB s B (5.2.68)
D---'6-" Dt 6r 6A
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5.3 Geometry. and Kinematics of Shell

5.3.1 - Geometry of the Shell Structure

A shell is a three-dlmenslonal body with one dimension small, compared

to the other two. So, the shell structure can be viewed as some reference

surface having material of some thickness on both sides. It is usually

assumed that this reference surface is in the middle of the structure and

so it is called "the middle surface." Hence, it is possible to describe a

position of any material point of the shell by the following system of

coordinates:

u°
or ; r I, 2- (5.3.1)

_o ; r 3

where u° are the material coordinates on the reference surface and and _o

is a material coordinate normal to the reference surface and assumed

independent of time. It is possible to choose _o as the distance of the

materlal point from the refernce surface at time t - O. Then the distance

of any material point from the reference surface at any time will be

constrained by:

-h(ua.t) s ¢(er,t) s ÷ h (ua,t) (5.3.2)

where h is half the thickness of shell in that particular point. Most

generally, it is possible to describe the position of any material point in

the shell by:

x (or,t)- xl(ua,t)+ yi(er.t)

where xi is the position of the middle surface.

(5.3.3)

The additional vector yl

can be decomposed, in the T-system, into a reference surface part and a

part which is normal to the reference surface, or
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if] i r i _(er,t) * niyIeF,t) (5.3.4)y ,st,t, = x r y = xa Y

The component of yi, which is normal to the reference surface, is the

distance of the mat'erial point from the reference surface, meaning,

_(er,t) A y(er,t)

From Eq. (5.3.3) it is clear that for 83 - 6o " 0 we obtain:

- xi{u°,t) (5.3.5a)

or, in fact:

y [u ,o,t)- o andY(u°,O,t)- 0

Without loss of generality, it can be assumed that, at t - O,

xi[er,o) ..xi{u(_,o), y[eY,O)n i

(5.3.5b)

(5.3.6) .

This means tht at time t - O, the particular point is on the normal to the

surface, so:

ya(er,o) - 0 (5.3.7)

Let us consider next a few approximating assumptions related to the

character of the deformation.

Assumption I: The material points which were on the normal before the

deformation will be on the same normal to the surface after deformation.

In other words:

if: y°(er,0) = 0 then: ye(BY,t) = 0 (5.3.8)

Substitution of this assumption, which is nothing else but the first

Klrchhoff-Love assumption (see section 5.1), into Eq. (5.3.3) yields:
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-i u° + (5.3.9)x (or,t)- xi( ,t) x[er,t)ni

From Eq. (5.3.5b) it can be shown that it is possible to expand Y into a

power series of _o in the following manner:

W

n lu nY(°r't)" [ _n [u°'t) " _o" _o _n+1 ,t) • _o (5.3.10)
n-1 nO

With regard to Eq. (5.3.10), it is possible to introduce yet another

simplifying assumption.

Assumption II: The shell is "sufficiently thin" in order to assume a

linear dependence of xi on _o then,

YIer't) " EO _'1 Iua't'] (5.3.11)

Substitution of Eq. (5.3.11) into Eq. (5.3.9) and use of the notation _I A
m

¢ yield:

_i[er,t) . xIIum,t)* _o_(Ua,t}n i (5.3.12)

It should be remarked that it is possible at this stage to assume a

parabolic dependence on _o and to get a theory which are similar to

Reissner's theory. The linear dependence is the most popular in the

different approximate shell theories (for this shells).

Assumption III: The change with time of the gradient on the surface of the

shell is negligibly small. A different formuiatlon of this assumption can

be found in Niordson's work [95]. According to this assumption, points
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which are on a surface which is parallel to the middle surface before

deformatin will be on a parallel surface after deformation, meaning that

is the independent of u _ :

xi(er,t) = xi(ue,t) + 5o*(t)ni (5.3.13)

Additional assumptions lead us to the classical formulations.

Assumption IV: The change with time of a distance of a particular point
Z

from the middle surface is negligibly small. This is in fact the third

Kirchhoff-Love assumption and in our notation it means that 5 (or Y or _)

are independent of time:

xi(0r,t) - xi(u_,t) * t o ni (5.3.14)

Eq. (7.3.14) is the common one (in the literature) for shell theories

obeying the Kirchhoff-Love hypotheses.

On the basis of the above four simplifying assumption, several

formulations result, for the analysis of thin shells. These formulations

are denoted below by capital letters.

Formulation A: This formulation makes use of Assumptino I, only.

Formulation B: This formulation employs Assumption I, and II.

Formulation C: This formulation employs Assumption I, II &III.

Formulation D: This is the classical thin shell theory based on the

Kirchhoff-Love hYPotheses or Assumptions I, II, III

and IV.

Formulation E: There exists a different formulation in the open

literature 96, Assumption I (accounts for transverse shear effects). This

literature96, 97 which removes Assumption I (accounts for transverse shear
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effects). This formulation starts by assuming that the shell is thin

but ye _ 0 in Eq_ (5.3.4). In other words, they assume II without assuming

I and obtain from Eqs. (5.3.4) and (5.3.11).

[i[er,t). xl[u°,t),

l[u_,t) _o[X i ye[ue,t) * _(ua,t)n i] (5.3.15)I X +

Additional Formulation: It is possible also in Eq. (5.3.15) to impose

additional assumptions about the shape of @, such as Assumptions III and IV.

The kinematics of the shell structure can be developed on the basis of any

of these assumptions (or others). The corresponding metric for the

different formulations are described next, before developing the kinematic

expressions.

5.3.2 - The Shell Metric

In this subsection we calculate the transformation tensors and the

covarariant components of the metric tensor for every one of the shell

formulations which were presented and discussed in the last subsection.

First, for the case of the most general description (without any

aproximatlng assumptions), from Eq. (5.3.3) we obtain the transformation

tensor:

-i i + yi (5.3.16)
x ;[- x ;F ;F

Already in the notation of Eq. (5.3.16) there is a hidden assumption that

the system at rest xi is cartezian. Otherwise, the transformation t_nsor,

which in fact is _xi/_8 r, would need an additional term which includes

Christofel symbols of the space, on the right hand side of Eq. (5.3.16).

From Eq. (5.3.4), one can write
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i
Y ; = - b8 b_ay ; 6y ;_o ;_o

(5.3.17)

Similarly to the definitions given by eqs. (5.2.37) and (5.2.38) for vi;r,

we define here the following tensors, for yi;r

_a e _ a y (5.3.18)
•8 = Y;8 b8

. ya + y
_.B baB ;S

By substitution of Eqs. (5.3.17), (5.3.18) and

we obtain

(5.3.19)

(5.3.19) into Eq. (5.2.16)

x-i;y " Ixl_ [_*a _o_] * ni_a } 6ya _ {xi_ Y;_o ÷ ni Y;_o } 6_ (5.3.20)

The covariant metric tensor of the shell is defined by:

- _i, _i (5.3.21)gr_ " glj r ;_

Substitution of Eq. (5.3.20) into Eq. (5.3.21) and rearrangement of the

terms yield the following expression:

a Y_;_o + _ Y } aa ;_o 6r

+ (Ys;(o + YB Y;(o j 6) B

(5.3.22)

+ {Y_;_o Y;_o + Y;_o Y;_o } _ 6_
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where a 8 is the metric tensor of the surface, Eq. (5.2.2). The

contravariant components of the metric tensor are defined from the

following equality:

- -_ _ (5.3.23)
gF_ " g " _r

Similar to the surface formulation, it is possible to define here the

-F
inverse transformation tensor L i by:

-r
Ll " glj

So that,

(5.3.24)

-A -I - _ (5.3.25)
Li x ;r r

and

-_r glJ -_ -r (5.3.26)
g - L i Lj

It is worthwhile to notice that the covariant derivative of the shell's

metric tensor, Eq. (5.3.22), is not equal to zero. This means that raising

and lowering of indices in the space of the shell is not permutable with

r
covariant derivatives. For example for any vector T :

Tr;_ . (gr_TA),._ . gr^ T_;_ (5.3.27)

Formulation A

We shall formulate now the metric of the shell in view of assumption I

(Formulation A). From Eq. (5.3.9) or by direct reduction of Eq. (5.3.20)

for ya . O, we obtain for the transformation tensor:

x-lit . ]x_[6_- Yb_] • niy;s} 61.el + tY;¢o ni} 6_ (5.3.28)
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and for the metric tensor:

ir A . jaa8 _ 2ba8 y ÷ y2 b_a bB_ ÷ y
8

;a Y;8 } 6T 6_

÷ [Y:_ Y;Go} 6r

Formulation B

When the second assumptln is imposed (Formulation B), we obtain from

Eq. (5.3.12) for the transformation tensor:

,_ °_] n_ o n' _x ;r " {x_[6a - Go + Go _;a} 6r • {@ } 6 (5.3.30)

and for the metric tensor:

- 2 $2 _ 2
gY_ " [as8 - 2Go _bs8 ÷ Go bxa b8 ÷ 5o _;a

(5.3.31)

Formulation C

When the third assumption is added (Formulation C) we obtain from Eq;

i

(5.3.13) for X r:

. a + {+ ni } 6_-' +<-,o+¢++,x;T
(5.3.32)

and for the metric tensor:

- . _ +, ,,+ I+_}+)+_g].,,, Jaas - 250 +boB+ Go +2bus} 6]. 6.4 (5.3.33)

Formulation D

For the classical shell approximation theory, we obtain from Eq.

(5.3.14):
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_i i _ , _.ini)_);r" f_,, [_ -_o%]i 6r (5.3.34)

- 2 _} a 8 ¢ 6_ 6_ (5.3.35)gr^ = {a_s - 2_o ba8 ¢ _o b_a b8 6 r 6/_

Formulation E

"Finally, for this formulation, we get slightly different expressions

from Eq. (5.3.15). First, for the transfbrmatlon tensor:

and then for the metric tensor:

2 ~_ - - a 8
¢ _'B_] ¢ _o[_ _'_B" "%"B1) 6r 6^

B

whet e:

(5.3.37)

(5.3.38a)

- { -'f ,)o}a b_aY ¢
(5.3.38b)

meaning that _ and _ are of the same structure as those defined by Eq.

(5.3.18) and (5.3.19), but independent of _o.
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5.3.3 - The Shell Kinematics

The kinematics of shell can be fully described by the components of

the rate of the transformation tensor _T_' defined by Eq. (5.2.43), for the

T-system. From Eqs. (5.2.57) and (5.2.58) it is clear that ¢ defines

exactly the strains and the rotations of the structure. If one is not

satisfied with the internal description, there is a need to define the

components of the velocity vector at every point of the structure. Similar

to the metric analysis of the different possibilities to contract shell

theories (see previous subsection), in this subsection the components of

the ¢ tensor and the components of the velocity vector will be defined for

every shell theory formulation of subsection 5.3.1.

Following the kinematic analysis of surfaces, we define now the

components of the velocity vector v by:

-i dx i Dx i
v .... (5.3.34)

dt Dt

Substitution of the general definitions given by Eqs (5.3.3) and (5.3.4)

into Eqs. (5.3.34) yields:

. _ [xi • xi _ nI_i Dt s y + Y] (5.3.-35)

and through Eqs. (5.2.30), (5.2.31), (5.2.36), (5.3.37) and (5.2.38) one

can write

-i v i i ye + x i DY 2 • i i DY
v - + v ,o u D-'t-- p xF Y + n D"_

where v i is the velocity vector of the reference surface.

be shortened by making use of the T-system as follows:

(5.3.36)

Eq. (5.3.36) can

-i i i F i Dy F
v -v + v y + xF (5.3.37);r Dt
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We define now the rate of deformation tensor $ for the general case Eq.

(5.3.3).
-i

For this case the transformation tensor x;r is defined by Eq.

(5.3.20) and the metrld tensor by Eq. (5.3.22). Fromthe definition for @,

Eq. (5.2.43), we obtain

- . _i D_
*rA glj ;r D---t-

(5.3.38)

Substitution of Eq. (5.3.20) into Eq. (5.3.38) and reordering of terms

yield:

+ _ Y 6 DAY DA_
_YA {_aB + _a8 _8 _vB a _Y6 _ + 8 + _= + a _B aa_ D----t-a_6 a Dt

D'YB

a Dt Pa "Y8 PB "Ya + P'Y ['Yc,A8 61" 6A

"f y; $" { yV
+ PBAB _o - YBYY;{o ] _ PB Y;{o _ 6_ 6A "," _'av ;{o

8 y;_o aav Dt + av6 a Dt + a Dt

* P'Y[_"YY - _ Y ; ] - Pa Y } aa ;_o a _o ;_o 6r

"Y 6
+ {*'_6 Y;_o Y;_o * a'f6

-y

Dt _o •_o
(5.3.39)
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a and Y are
where _a8 and Pa are given by Eqs. (5.2.37) and (5.2.38) and _B a

given by Eq. (5.3.38). Note that aa8 is the metric tensor of the reference

surface.

For the sake of completeness we also include the expressions for the

rate of deformation, dr/, , and spin, wr/,, tensors according to the

definitions of Eqs (5.2.57) and (5.2.58), respectively,

6 6
D_ DA

= + ,_6 .+ _6 , _'Y 6 , 1 8 +
-dr/, [dab do6 8 d86 a dY6 a _8 g [aa6 D---_ a6B D_a

DA6B 6 D_ D_ B D_

_a a a a S

+¢ 6 6
* {d'YB Y ;_;o * dY6 _'8 Y;_;o

1¸ _ "Y
* _ [as> Dt + aY6(--_-Y;_O

e Dt - _ z;_o+ _B ]}{6 _/,B,+rB+ ),

6

;_o Y;_o + a_6 Dt Y;_o +

D_ta8 D,_ DI:

1 [_..__, J_L , ;_= {dab * _ Dt Dt aS

a a B,
* "YB "-_ ]} 61. 6/, 2" Dt + D"-t

Y;¢o_t °} +_ ¢_"

A_ DAY8 D_ B+ --+_ --+
a Dt a Dt

YV;EO ÷ _8 Dt *

8 Dt "

+ Y;Eo Dt '
(5.3._0)
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8 _ D'Y8 D_
D_ D_ 6 1 + _ -- a _B ] + Ya P8 - _8 Pa ++ a_d [_Y D---t- D---t.18 a Dt- D---t

+ P6 (Ya 48 a dr dh {w_8 Y;_o + wY6 8 Y;{o +

DAd8

+ _ [-asY Dt + aY6 ;{o
Dy8d ] + --

8 Dt Y; {o

Dt 8 ;{o 8 {o •{o
8 8- dr

(5.3.41)

In Eqs. (5.3.40) and (5.3.41), dab and w 8 are the component of the rate

of deformation and the spin tensors of the reference surface, defined by

Eqs. (5.2.59) and (5.2.60).

It is worth noticing here again that the expressions in Eqs. (5.3.39) -

(5.3.41) are exact, but virtually impossible for someone to use them in

numerical computations, because of their complexity. However, they may be

used to check the accuracy and performance of the other formulations.

Formulation A

We develop now the kinematic expressions according to Assumption I

(Formuldtion A), that is y_-t O. The components of the velocity vector are

obtained through differentiation of x i, Eq. (5.3.9), or by substitution of

the assumption y - 0 into the exact expression of Eq. (5.3.36).

Accordingly we obtain:

-i I Y i i DY
v -v - p x_Y+ n D--_

(7.3.42)
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The rate of transformation tensor is obtained also, by substitution of the

right transformation tensor into an Assumption I [from Eq. (5.3.34) into

the definition of Eq. (5.3.38), or by reduction of Eq. (5.3.39)]:

- _ y b_ y b_ 6 y2_TA= J@a8 - _aB b8 - _B a + _6 a b8

- b_ Y) (--6"_- (aa8 aa_

DY
DY ;8

- P_ Y ÷ PB Y - _ Y[b_Y * b_Y ]I _ B

DY,8

÷ {-_ Y - p._ Y ÷ p8 Y;_o hi3 Y;_o 8 (5.3.43)
;¢oj 83 6^

The rate of deformation tensor for the Formulation A is

Dba8 DY I Db_
y2 Db'cs b_ y2)

÷ b • + y DY 1
DY8 DY a 8

DY'8.._ ;¢o -t_ a_ a r

DZ_¢o_
(5.3.44)
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Similarly, the appropriate spin tensor is

Db 6 DY DY

o )] y2 I [y o ;B _ y ;o ]- b68 D-'-_ _ D-T ;S Dt

_ 6yy _b yy )} o s
÷ PB Y;_ P_ Y;8 - PY[b8 ;a (_ ;B aT 6_

y+ II(DY;8 _ Y, ) Py Y Y"_'--6_- Y;{o "B - bB ;F.o

8 _ 68 6_) (5.3.45)+ P8 Y;{o } (6_ 6_ F

Study of Eq. (5.3.44) reveals that, In vlew of assumption I, there exist

shear stralhs through the thickness. These strains are equal to zero in

the reference surface [from Eq. (5.3.5b)], but different from zero anywhere

else and their value depends on the distance from the reference surface.

It is interesting to notice also that these components depends only on the

gradients of Y and on the time rate of change of these gradients.

Formulation B

If we assume now a linear dependence of Y on to, meaning that we

impose the second assumption also, we obtain the components of the velocity

vector through dlfferentlatlon of Eq. (5.3.12), or by substitution of Eq.

(5.3.11) into Eq. (5.3.42), for this case

. • 1 D_ 1
_1 vl - _o _ P xy • _oD-t n (5.3.46)

One should not confuse _ in Eq. (5.3.46), whlch is a scalar, with the

components of the rate of the transformation tensor, @rA"
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In view of assumption II, the componentsof the rate of transformation

tensor, STA' are obtain from substitutin of Eq. (5.3.11) into Eq.

(5.3.43), or

Db_
bY ¢+ --_)* PB e;a - Pa e;8] + _2[e2(e76 a bB bYa

De

Y De • _ ;B _[ Y
+ bYa b8 D--t ;a Dt PY bB e;a • bY e, )]} o Ba "B GF 6A

De;8 B

+ [eP 8 -Eo[e2b_ PY Dt " e]} 6_ 6A

(5.3.47)

Similarly, the rate of deformation tensor, dr_ , for assumption II, is

obtain by substitution of Eq. (5.3.11) into Eq. (5.3.44), or

Dba8 De 2 1 e2 Db: Db'fB b:)_r_" ida8 - _o-6i-÷ b_B_] + _o[_ --_--by_+

• bY De 1 DeI8
De

;e D---_- 6r

(5.3.48)

The components of the spin tensor _rA' for this case, are obtained from

subsitution of Eq. (5.3.11) into Eq. (5.3.45), or
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- + _- b_)+ p_ _ - Pe ]wrA = {web {o[_(_e b8 _Y8 ;e _;B

Db_ Db 8 D_

Yb _ 6 _(b6e _ b6 _ ))+ _(_, ;B+ _ [_2[w_8 86 e b8 ÷ D---_ 8 Dt "e Dt

D_
• 8

- *;B -_)- P6CbB* *;o b_ _ )]} e B
- e _;B 8F 8A

(5.3.49)

D_,8 D_
_2

f _

In both Eqs. (5.3.48) and (5.3.47) it is customary to neglect the terms

2
which are multiplied by _o' in accordance with the assumption that only

the terms which are linear in _o were kept before. Similar to the results

under assumption I (Formulation A), here also the shear strains, d3T ,

vanish on the reference surface. This strain components are called by

Reissner [5.17] "the surface shear couples. The appearances of these shear

couples causes surfaces which are parallel to the reference surface before

the deformation not to remain parallel to it after deformation. This is so

because surface gradient of $ does not vanish. It is customary to give a

physical significance to the function ¢ [5.58] through the definition:

h[u°,O)
(5.3.50)

Clearly then, the term _o % is the distance of a particular point from the

reference surface, at time t. It is clear now, that the nonvanishing of

the gradient of _, ($,e) means that the change of thickness of the shell is

inhomogeneous (nonconstant).
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Formulation C

If we superimpose now assumption III, that is, the independence of

of u_ , then (as explained before) the surfaces which are parallel to the

reference surface will remain parallel after deformation. This means that

the change of thickness all over the shell will be the same. This does not

limit the shell to be of the same thickness, throughout. According to

assumption III, the corresponding velocity vector is obtained by

differentiation of Eqs. (5.3.13), or

-i i • i D_ i
v = v - Go _ p xy + G° _-_ n (5.3.51)

This Eq. (7.3.51) is of course the same expression as Eq. (5.3.46) for

Formulation B. In contrast though, STA' which is obtained by a reduction

of Eq. (5.3.47), has a much simpler expression,

- . Y+ b Y + _.._) D_,

2[,2[,.,6b" _ + ..._.1 Y D, o B+ GO a bB bYa + bYo b8 _' D"t]} 6]. 6^

(5.3.52)

Correspondingly, the components of the rate of the deformation tensor dry,

for this formulation are [from Eq. (5.3.48)]

DbsB D_ 2 1 2 DbaY

_r_" [dos- _o[_"ST-+ bob_] * Go [__'[-'6"6bYB Dby8 ba_ )÷ --

Dt

bY D@ a 8 {$ D_ (5.3.53)
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Similarly, the componentsof the spin tensor Wry' are obtained from Eq.

(5.3.49):

+ l[b6a Db6B Db6 a 8

_ B B a_) (5.3.54)

As expected, assumption III causes the surface shear couples to vanish. A

formulation (development) based on Eqs. (5.3.52)- (5.3.54), with the term

multlplyng _2 neglected, can be found In Ref. 98.

Formulation D

The addition of Assumption IV bring us to the rate formulation of the

classical shell theory, which includes all the Klrchhoff-Love hypotheses.

Imposition of assumption IV, neglectng the change of thickness of shell

with time (, = I), into Eqs. (5.3.51) - (5.3.54) yields the following

expressions:

for the velocity vector

-i 1
v = v - _o p

for the rate of transformation tensor:

- = _ b _
*rA {*_B - _o[[*av bB + *YB a + aa_

_O2[[,_6 b_ 6 Db_ a B+ _,b_ • b.vo"b'F-3} ar _^

_ 8 Ba_)• sI0 
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D"-'_]]+

(5.3.56)



and for the rate of deformation tensor:

Db8 Db_ Db_B

the components of the spin tensor remain unchanged, and they are given by

Eq. (5.3.54).

A formulation with displacement vectors as given by Eqs. (5.3.55) -

(5.3.57), and with neglecting the terms which are multiplied by _2, is

the classical formulation and appear in many works (see subsection 5.1).

Formulation E

Let us formulate next the kinematics for Formulation E, for which the

only requirement, from a physical point of view, is that the shell be thin

and from a mathematical point that the expressions have a linear dependence

on _o- The components of the velocity vector are obtained through time

differentiation of Eq. (5.3.15).

-i i xi D_ _ i D_ n i
v - v + _o[V 1 -c, - o x.y _,÷ _-_ ) (5.3.58);_ y + _ Dt

The components of the rate of transformation, rate of deformation and spin

tensors are obtained by an appropriate reduction of Eqs. (5.3.39) -

(5.3.41) that is in every place instead of _u' B we substitute _o -_ and

instead of _a we substitute _o _u , where _ and _ are defined in Eq.

(5.3.38). A kinematic development, based on this formulation and expressed

in finite displacements and rotations, can be bound in Ref. _

5..3.4 - Shift to the T-System

The coordinate systems of the shell space xi, which were introduced in

subsection 5.3.1, are not well adjusted for the introduction and

development of the physical principles to follow. The reason for this is
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that, on one hand the metric is confusing and of special character (like

the nonvanishing of covariant derivative of the metric tensor) and on the

other hand it is impossible to compare quantities which are defined in

different coordinate systems. The solution to these difficulties is

accomplished by shifting the different kinematic parameters to one

coordinate system which is of a simple metric and obeys the Ricci Lema.

Such a coordinate system is the T-system which was defined in subsection

5.2.1.

The component of any space vector Ai can be expressed in both systems,

the T-system or the different xi systems, according to

Ai = x_ a T = xl;_a _ (5.3.59)

From this, we can obtain the connection between the a - components and the

a - components, or

a T r x i aT (5.3.60)
= Li ;A

Following Ref. [983, we introduce the notation:

r A r -i

v_ = Li x ;A
(5.3.61a)

v-lrA =a Li-rx_ (5.3.61b)

From their definition, Eq. (7.3.61), tensors v and u-1 are nothing else but

euclidean shifters [99], and they will be used here to transfer the tensor

components from the different shell systems to subsection 5.3.1 to the

T-system. The shifters p and _-I are absolute double tensors, and they

obey the orthogonality conditions,

r -1_ r r -19 69 (5.3.62)
IJ/_ • IJ 9 = 69 ; v/_ • v r = /_
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Also from Ref. [g9], the metric tensor is transferred from one system to

the other by:

- _r ¢ (5.3.63)

in other words, the metric is conserved during the transformation.

As mentioned earlier, the objective is to transfer the kinematic

expressions of the last subsection to the T-system. A short study of

subsection 5.3.3 reveals that the shift of the rate of transformation

tensor, _, suffices to give all the needed internal information about the

character of the deformation. The definition of _, from Eq. (5.2.43), is:

_rA " glJ Xi,r _ (5.3.64)

It is clear therefore that, in order to transfer _ it is necessary to shift

-i
the transformation x and their material derivatives. We further note

;r

that we are not discussing a "legal" transformation from system to system,

therefore it is impossible to perform a direct transformation of tensor

without taking into account its components.

the definitions of xyl and Lir in the T-system, Eqs. (5.2.23) -From

(5.2.24), and from Eq. (5.3.61) it is clear that the shift of the

transformation tensor is taken place by:

-i 1
x ;r " x_ vr (5.3.65)

-i

For the material derivtive of x _, which is, in fact, the covariant deriva-

tive of the velocity vector in the shell system, one must take a derivative

of Eq. (5.3.65) as Is,

Dx I_ D(x_ p_);[
mm

Dt Dt
(5.3.66)

128



From the chain rule and Eq. (5.2.47), one obtains

;r i _ i Dvr

D---6"= v _ vr * x_ --_
(5.3.67)

Substitution of Eqs. (5.3.65) and (5.3.67) into Eq. (5.3.64) yields:

- x i _ vj _ i DV_
*rA" glj [ (5.3.68)

Finally, use of Eqs. (5.2.43) and (5.2.25) results into the form

_rA = Vr v_ _f_ + a _ v r D----{ (5.3.69)

The mixed components of _ are defined by:

A

" *r_ ' (5.3.70)

and from the inverse operation, in Eq. (5.3.63), we have

_¢ X_ -1¢ -lr - (5.3.71)

Substitution of Eq. (5.3.69) into Eq. (5.3.71) and reordering of the terms

with the help of Eq. (5.3.62) yield the following expression:

-1 ¢ D_
(5.3.72)

With the help of Eqs. (5.3.69) and (5.3.72) it is possible to express all

the kinematic parameters in the T-system. The shape of the tensors p and

its inverse, U-1, will depend on the definition of the shell system, or, in

fact, on the definition of _i, according to the different assumptions in

.subsection 5.3.1.
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At this point, one may ask if there is a need for all the

manipulations of the kinematics in the preceding subsections, since it

suffices to find the expressions for w and _-I and by these to uniquely

define all the kinematics. However, inspite of the simplicity of the

expressions in Eq. (5.3.61), it is not simple at all to find the

expressions for the shift tensors, especially for u-1.

For the components of p we obtain a closed form expression by

substitution of the general definition of x t
;r

(5.3.61a), or

r r i r 3

from Eq.. (5.3.20) into Eq.

(5.3.73)

where,

A

v A _3 ; y3 . y (5.3.74)
(_ = .(_

The expression in Eq. (5.3.73) is exact, and it is possible to introduce it

into any one of the five formulations (A-E) or into additional formulations.

As an example, we may substitute the classical assumptions (I-IV) into Eq.

(5.3.73). In this case, yi = to ni and

_r _b > er v r (5.3.75)
.e = o to o ; Y;_o = 63

Substitution of Eq. (5.3.75) into Eq. (5.3.73) for U:

r
(5.3.76)

which is the same expression as in Refs. [98] and [99].
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For the inverse shift tensor, _-I, it is possible to makea similar

development as for U, that is substitution of Eq. (5.3.20) into the

-r , Eq. (5.3.24), and a repeat substitution into Eq.definition of Li

(5.3.61b) yields,

-IA g_f(a_B6_ ÷ _ra ) 6_ + YF 6_} (5.3.77)r " ¢ ;_o

In contrast to the expression for _, in Eq. (5.3.73), Eq. (5.3.77) includes

the metric tensor of the shell and is not expressible in terms of

parameters for Y-system, only. In order to overcome this problem for the

full Kirchhof-Love assumptions (Formulation E), Refs. [98] and [99]

developed p-1 in terms of power series in _o, and kept only the linear

term. If we assume linearity in _o, and kept meaning neglecting the term

2
multiplied by _o in Eq. (5.3.35), and substitute Eq. (5.3.75) into Eq.

(5.3.77), we obtain the same expression for the approximate u-1 as in Refs.

[98] and [99]. This expression is

r" _r 6,y 63 (5.3.78)

At this state of our development, we shall not make any assumptions or

approximations for the expression of u-I, and we shall keep the full

expansion, as given by Eq. (5.3.77).
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5.4 - The Principle of the Rate of Virtual Power

5.4.1 - The Principle of Virtual Power and the Equation of Equilibrium

The principle of virtual power (virtual velocities), as applied to

shells, may be stated, in a similar manner as in the three dimensional

formulations, or

V V A1

(5.4.1)

where all the parameters are referred to the material system of the shell

space

o - are the components of the Cauchy stress tensor

_r

_r

- are the components of the rate of transformation tensor

- are the components of body forces per unit mass

- are the components of the external forces on the boundaries per

unit area mass.

-r
v - are the components of the velocity vector in the shell system.

p - volume mass density

- mass density per unit area

In order to simplify the first discussion, we limit ourselves to the

case in which the external forces are applied only on the shell bounding

surfaces (_o - ± h). Moreover, we assume that the shell is supported

(constrained against translation) around the boundary of the reference

surface in the transverse direction. A volume is defined in the shell

system, Eq. (5.3.1) by
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A
dV = [_d81 de2 de3 = g deI de2 d_° (5.4.2)

where g is the metric determinant of the shell [_- det(gr_) I. Eq. (5.4.2)
can be written also in the following way:

dV - da d_° (5.4.3)

where da is a differential area at a distance _o from the reference

surface.

Without losing generality, we can write for

o) (5.4.4 
where g is the metric determinant in the _-system, and Z is a function of

_o, whose shape changes according to the definition of particular (=)

system, or actually according to the different assumptions about the

character of the deformation. In view of Eqs. (5.4.1) and (5.4.2), we can

state for dV:

dV = _ • Z(5 o) d81 de 2 d_o - Z(5 o) da d5 ° (5.4.5)

where da is a differential area on the references surface. In a similar

manner we obtain the following expression for dA (differential area on the

bounding surface )

dA i -Z(_ h) da (5.4.6)

The expressions appearing as integrands in Eq. (5.4.1) need additional

treatment also. It will be convenient to transfer all tensor quantities

Prom the shell system to the _-system. For the first integral in Eq.
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(5.4.1), by making use of Eqs. (5.3.61), (5.3.69), (5.3.62), by reordering

the terms and by substituting Eq. (5.4.5), we obtain the following

Dp_
I _ r_ 6¢r_ dV- _ olr¢[6¢lr¢ + avD(_-1)¢ 6--_E ] Z(_o)d_oda (5.4.7)

V V

At this stage, we introduce the first approxlmatin by neglecting the

2 [inside the brackets of the Eq. (5.4.7)]. Thisterms multiplied by _0

linearization does not affect the term 6@p¢, which is independent of _o-

The approximation only affects the second term in the brackets, a term

9

which will always contain certain higher powers of _o (but at least _o ).

In view of this approximation, the term in the square brackets is at most

linear in to- Hence, we can denote the coefficients of _o by _ ¢ and the

one which is free of to by 6_ ¢. In addition, we introduce the following

expressions.

+h

N_¢ = _ o_¢ Z({ o) d{ o (5.4.8)

-h

+h

MV¢ " I °we " _0 " Z({o) d{o

-h

Note that both Nv¢ and M v¢ are symmetric tensors, by definition.

now write Eq. (5.4.7) in the following from:

(5.4.9)

We can

V a

(5.4.10)

This form is used widely in the literature and it will be adopted, herein,

in order to facilitate comparison with other works.
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Wenext proceed to deal with the second volume integral in Eq. (7.4.1).

Here also we transfer all the tensors quantities to the T-system. Vector

is transfered directly to the T-system in a standard way by employing the

shift tensor p-l, but the transfer of _vT needs some additional

considerations. From the general definition for _i, Eq. (5.3.37), we can

express vi by:

-i i[^ • yr i *•, v + x_ Av xl% .r - v (5.4.11)

From this, it becomes clear that v are, in fact, the components of the

velocity vector v in the T-system.

T-system is therefore:

The formal transfer of vT to the

- r
v r = iJ_ v I. (5.4.12)

Substitution of Eq. (5.4.12) into the second integral of Eq. (5.4.1), and

(similar) transfer _r into the T-system, making use of the orthogonality

relations of the shift tensors, Eq. (5.3.62), and of Eq. (5.4.5) yield the

following expression:

I p_ r 6_ r dV-IpB r 6v r . Z({o)- d_ ° da

V V

We next define two new parameters, similar to N T¢ and M _¢, by

+h

br" I pBr " Z({o) " d{o

-h

(5.4.13)

(5.4.14)

*h

dr " I pBr " {o " Z(_o) " d{o

-h

(5.4.15)

Here, also we impose the assumption that in the expression of v, we can
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neglect all the terms of _o with powers bigger than one, whenever they

i

exist. The term 6vF can also be separated into a linear component _o with

6^(I) CO) With
ur as a coefficient and a components which is free of _o, _e T •

the help of definitions given by Eqs. (5.4.14) and (5.4.15), the second

integral in Eq. (5.4.1) can be expressed as

I pBr 6_r dV I [br6e(_) r (I)= + d 6B r ] da (5.4.16)

V a

The treatment of the third integral in Eq. (5.4.1) is similar to the

treatment of the second. Transfer of the tensorial quantities to the

T-system and substitution of Eq. (5.4.6) yields:

I T _r _]. dA - _ "fF]"_v F [Z(_ 0

A a

We define now the following values:

_o-h t h

]da (5.4.17)

r r . yFr [z[{o) (5._.18)

c r . ,rFr. G° • [z({o) ]
_o=±h

(5.4.19)

By using these definitions and separation of 6v as applied to the second

integral, we obtain the following expression for the third integral:

I_r _r _ " I [fr_e(°) ÷ °r 6"(1)] dar Ur

A a

(5.4.20)
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Finally, from Eqs. (5.4.10), (5.4.16) and (5.4.20) it is possible to

express the principle of Virtual Power, Eq. (5.4.1), in the following form:

I [Nlr¢. 6_Ir e + Mire 6_1r_ _ (b r • fr} 60(0) _ (d r + c ]') 6e(1)] da = 0T r

a

(5.4.21)

The equilibrium equations and the boundary conditions are obtalne from Eq.

(5.4.21) by the application of the Gauss-Green theorem, where the character

of the kinematics variables 6_ ¢, 6_ ¢, 68_ O) and 6^(1)ur depends on the

different approximations assumptions for the deformation of the shell

structure.

As an example we will derive next the equations of equilibrium and the

boundary conditions for Formulation D in subsection 5.3.1; meaning, the

classical theory based on the Kirchhoff-Love hypotheses. From the

definition for _ ¢ in Eq. (5.2.44) and the expressions for the shift

tensors for this case (Formulation D) in Eqs. (5.3.76) and (5.3.78) we

obtain:

6_ ¢ = 6_ ¢- [6vo; B

and

- ,,o_,w1,o ,_

• C6w,.o* b"o_v.,)C_%o_6o,,_) C5.4.22)

0b;
6w.,.¢ _ao.y6{_..D.._) 6o 8 = 'v 6v.¢ ÷ b_ 6v.y= T 6¢ - tbo;s o ;S

_ 6o B
- bB 6va; v * 6W * 6W};oB b B bvo _ 6¢ (5.4.23)

The expression for v in Eq. (5.4.11) reduces (for Formulation D) to:

vr- [%- _o[Wo bXo vX)] 6TO+ w6_ (5.4.24)
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From the above, one may write

.(0) a + (6W) 6_do Y - (dv) 6 T
(5.4.25)

de(TI) . - [6WIo _ bwe 6vw]6Te (5.4.26)

Substitution of Eqs. (5.4.22), (5.4.23), (5.4.25) and (5.4.26) into the

principle of Virtual Power, Eq. (5.4.21), making use of equations of the

type:

- NaB6v - N_B 6v (5.4.27a)NaB 6va;B { );B ;B a

MaB bYa 6v_io - (M_Bb Y_ 6v_)iB- (MaBb_)iB6v_ , (5.4.27b)

and using the Gauss-Green theorem, for the first term on the right hand

slde of Eq. (5.4.27), yields the final expression of the principle of

Virtual Power for Formulation D.

I I[-N°B;B- {M_b_},BB ,._B;Sby_ (b_ • f_)• (d_• J} b_]_v
a

+ [-NAB beo - M_BI_B- M_B bBY by_ _ {b 3 + f3) + {d _ + CY);_] 6W} a

+ I I[N(_B- MYB b3rO+ M_ta _ M_(_ bB] • _B" 6v(_

s

+ [MaB +dB ÷ C B] vB 6Wla

- M a8 • v8 • 6W a } ds - O.

where v is a unit vector normal to surface s.

• equation for the classical theory will be:

(5.4.28)

Thus, the equilibrium
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(N°B + M °7 bTB);8 - M_8;B bT° + pC - m_ bT° - 0 (5.4.29a)

Nm8 + MoB + MoB 7 , p3 ÷ _ - 0
bob ;o8 b B b_u m;_

(5.4.29)

= mr d F CFpY b Y • fF ; - ÷ (5.4.30)

Moreover, the boundary conditions on s from Eq. (5.4.28), under the

assumption that there are no forces applied on surfaces normal to the

reference; are

IN_8 - MF8 b_S + M_o b_] • v 8 " 0 or 6vs - 0 (5.4.31a)

[Me8 • m 8] • v8 - 0 or 6W- 0 (5.4.31b)

M aS- v8 - 0 or 6W- 0 (5.4.31c)

Similar to the definition of v, it is possible to define a unit vector t,

tangent to s, and by this to break the partial derivative of 6W into

tangent to- s and normal to- s components

- 6W • va * 6W • t (5.4.32)6W;_ ;.f ;s a

Substitution of Eq. (5.4.32) into Eq. (5.4.28) and performing integration

by parts, similar to Ref. [I00], yield the final shape of the boundary

conditions, Eq. (5.4.31). While Eq. (5.4.31a) does not change the next two

do and instead of Eqs. (5.4.31 b,c) we have:
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[M°B;o + ms) _B _ [M°BvBto);S = 0 or 6W= 0

MoB

(5.4.33a)

•.v B _ - 0 or 6W = 0 (5.4.33b)o ;o
It must be noticed here that had we not assumedthat there are no external

forces on the surface normal to the reference surface then, the requirement

for the vanishing of the static values in the boundary conditions, Eq.

(5.4.31a) and (5.4.33), would be changedto the requirement that they would

be equal to the external forces.

Eqs. (5.4.29), which were obtained here for the ciass_cal theory,

differ from the customary equations, as in Refs. [98] [100]. The reason

for the difference lles in the definitions for NFAand MT_. From Ref. 98.

the stress resultant _r_ and the stress couples _F_ are defined in the

following manner.

+h

_r_. I _r_ . Z(_o) d{°
-h

÷h

gr_. I _r_ . _o " Z({o) d{o

(5.4.34a)

(5.4.34b)

-h

Moreover, similar definitions for the components of the body and external

Use of these definitions yilds the following system of

N aB + M°B bY - MoB
- bob o bYB ;aS" 0 (5.4.35a)

(5.4.35b)

forces are given.

equations [I00].

These

_ NoB _.MY8 o + 2(MY8 o) - 0
;B bY;B by ;8

where Eqs. (5.4.35) were written without body or external forces.

equations, Eqs (5.4.35) replace Eqs. (5.4.29).
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From the definitions, given by Eqs. (5.4.34), it is possible to

developed equilibrium equations for the different formulations. For

example, we obtain the equilibrium equations for assumption V of subsection

5.3 by a similar process. Without external or body forces, the equilibrium

equations for this case become

NOB + N33 _ 6
- baB Y Y b_6

+ M 38 y_ [yP b
PY;B

+ MoB Yb'Yob'Y8 - [M°BY),o8

• Yb6B b6v * 2_6B b6_] = 0 (5.4.36a)

+ y o _ MYB a
[_NOB N33 y8 yO + 2M_B by]; B yby; B

_ [MYB ya + I[M3B yY ya + M3_ y8 yO]}iB. Y

-, o._) ) y {Yb 8 = 0+ {M3B[y°(Yb_ + A8 (5.4.36b)

- + + MBB[ybB ÷ _] = 0No3 [MOB M3B ya];8 (5.4.36c)

s33 Y M°B - [M3B Y] • M3B "Yb ] - 0- b(_B ;8 ['Y8 - y "YB

the related boundary conditions are:

[M°BY]_B,%",{M°B Y,% to};s = 0 o, 6w = 0

(5.4.36d)

(5.4.37a)

o,{2M "Y8 Y b.y

_ {[MBY yO 1 yO{M3B yY yB = 0 or 6v = 0

(5.4.37b)
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[Ma8+ M3B yO] . v8 = 0

DY2

or 6 D-'-_= 0 (5.4.37c)

DY
M38 Yv 8 = 0 or 6 _-_ = O (5.4.37d)

It will be also noticed that Eqs. (5.4.35a) and (5.4.36b) reduce for the

equality to the known equations (5.4.35), as expected. Similarly, the

boundary conditions, Eqs. (5.4.37a) and (5.4.37b), reduce to those found in

Ref. [1OO].

5.4.2 - The Principle of the Rate of Virtual Power and the

Rate of Equations of Equilibrium

The principle of the rate of virtual power is obtained by total

differentiation of the principle of virtual power [see Eq. (5.4.1)],

dt I _r_ 65r^ dV _...d..ddt
V

I p gr _v r dV-_ I _ _r 6[,r dA- 0dt

V A

(5.4.38)

There is a need to perform a formal time differentiation of every one of

the integrals in Eq. (5.4.38). Substitution of the definitions given by

Eqs. (5.4.8) and (5.4.9), into the first integral in Eq. (5.4.38) yields,

a .-_d I_r^ 6_r^ dr=--_-d [ [Nr_6vr_, MrA 6_r_] da= dt dt

V a

or,

dNr_ dMr^ d(6Vr_)

a

I d(da)+ [NrA _XrA+ Mr^ _r_ ] dt

a

•, Mr_ d('S_rt')] da
dt '

(5.4.40)
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where the time derivative of an elmental area of the surface is from Eq.

(5.4.5):

d(da.._.._2)._.L [(_') de1 de2.. ,_ da (5.4.41)
dt dt •g

Substitution of Eq. (5.4.41) into Eq. (5.4.40) yields the following

expression for I:

dN T/_ dp r/_
I- _ l f--_-" .r_ *"_]._"r_ * [-_-'" Mr *̂_a].%^

a

d(_r^)dI%^) [Mr_] }da* [Nr_] dt * dt (5.4.42)

The second integral in Eq. (5.4.38) can be developed in a similar manner.

By using the definitions, given by Eqs. (5.4.13) and (5.4.14), we obtain

[see Eq. (5.4.16)]:

J1 _ d (0)÷ d r (1)] da-a'/ I [br _e 6e r (5.4.43)

a

Finally, for the third integral in Eq. (5.4.38) we obtain from Eqs.

(5.4.18) and (5.4.19):

J2 _ _dt f [fr _e(O)r * cr _e(1)]r da (5.4.44)

a

Use of Eq. (5.4.41) into Eqs. (5.4.43) and (5.4.44), the addition of these

two and use of definition, given by Eq. (5.4.30), finally yields:

= dPr 1_r ,_ ] _o (0) + rdmr+ mr Cf_ ] _o (1)
• " dt . Y

a

(5.4.45)

o)) d[_O(1)
d[6O(r • [mr] r } da÷ [pr]. dt at
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Hence, the principle of the rate of virtual power, generally, can be

expressed by:

I - J = 0 (5.4.46)

where I express the rate of the internal stresses power and J the rate of

the external (applied forces) power.

Because of the nature of the elasto-visco-plastic constitutive

relations, there is a need to replace the total time derivatives in Eq.

(5.4.42), by Jaumannderivatives. FromEq. (3.2.51) we obtain for I:

dJNT_

a

dJM F+ +_% My + M].+
+ [ dt + _[. P + J%.¢ + *".]. 6_T_

d[++r^)
+ IN r_] d(+'fr+_) + [Mr_] } da (5.4.47)

dt dt

As an example we shall develop now the principle of the rate of

virtual power for the classical theory of shells, Formulation D in

subection 5.3. For the sake of simplicity, we assume that there are no

external forces and hence, the development deals only with the explicit

expression for the internal power, I. It must be noticed that the

addition of the integral which expresses, the influence of the external

forces is not causing any difficulty at all. In order to obtain the

explicit expression for I in Eq. (5.4.47), there is need to develop the

expressions for the total time derivatives of 6_T_ and 6_r_. Derivation

according to time of Eqs. (5.4.22) and (5.4.23) yields:

d[+,r^) %] +%,dt " [ dt ;8 - bob dt - "+

+ [,r s. ba+- o m;S] +W- [o'S] +v+} 6rO 8_B
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+ {-b "_
dt dt

+ p 6v
;_ _;_

-[P_o _6 b_] 6v.¢ p 6W*- .c= - bofy .o

.-- ÷ _f+ {b_ dI6V_)dt d(_W)dt ;8 -$_B b6 6V%

- P bB'y6W-_.YB 6W w} 6_ 6_ (5.4.48)

d[_r_} ,r d[6,,,,]b_ d{_v,,} .f
dt ;_

+ bB bYo= dt +

"Y
[pY _ {_6ob6},B;o=B

_ $6.8 b'Y , v 6 , b;]_)_ [__]b_ [_,6B] _,,.,

•O B

,, y b6B]-

D.y'Y

{p6 _ 6v_ b Y p6 6vw W p6 • p6 W 6w- bB;6 + o ;6 - b6 6v ;W b 6 bwa

+ p 6w.y 6r b6; B + P;6bB.

p6 _ 6 _ pY
+ b6 6vy; j * p b 6 byB dW + 6W
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where we made use of the connections between the total time derivatives of

covarlant derivatives and the covarlant derivatives of the total tlme one

(see section 2). We define also the following symbol:

[o_ ]-_D_°---_B - J (s.4.50)
B Dt .o;8

Substitution of Eqs. (5.4.22), (5.4.23), (5.4.48) and (5.4.49) into Eq.

(5.4.48) and reordering of terms yield the expllolt expression for I:

DJN _a dJM °B _ dTM "¢B o "Y N6O N'Y8i- {1 _ dt bs+ at be÷ _8 -d_6
V

$8.8 NYo _ MoB "¢+ M'f8 o _ MYB[_'¢ 8 b68] + MTB[_YTb;]+ P;8 P;8 • •

- "Y + + "Y- d'Y b;]

dJMO8

•o o;8

+ .o8[Y ] Y [NoB÷ M63 o]÷ Moo _ _6 _ _[o6B]o S + P;o- b6 [P;o8- .o;8 b8 - b8

6 Y bY B]- 2M6B[d_.BbY S]}6v_-19J NoB* bB[oS]* $66 o, o, dt bob

+ d 6 _ + $8 _ {MOB
+ 2M°B[P_o bYB s bB bY6 .8 bB bYo]} 8W + 2d6o ; B

dJ Mo'Y

- doI8;6] aY6} 8 W .¢ - {- h_ + Mm'Y $'Y.8 - 2M°B d;} 6W o B} dV
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+ I {NaS[d{6va) - 6_=_I _ HUB . 7 d{6v_)dt ;B baB dt " [ba;B dt

V

a dt ;B - bB dt ;_ + dt ;a8 ÷ bB bva dt

(5.4.5_)

As already mentioned, it is relatively easy to obtain the explicit

expression for J, in Eq. (5..45), and thus complete the formulation of the

principle of the rate of virtual power for the classical case of

Formulation D). It must be noticed that the second integral in Eq.

(5.4.51) is equal to the principle of virtual power itself and therefore

can be erased from the expression for I.

The principle of the rate of the virtual power is equivalent by

definition to the equations of the rate of equilibrium and the

corresponding boundary conditions. The equations of the rate of

equilibrium can be developed therefore from eq. (5.4.51) by the same method

we used to obtain the equation of equllbrlum Eq. (5.4.29), from the

principle of virtual power or by direct time differentiation of Eq.

(5.4.29). In both case we obtain the following system of equations:

dJNa8 dTM aY dJM YB

[--'W- + dt b_] ;8 - d---T )B b_° + N_B[,/,B] + No8[_,Yy._8]

- [dByN_a];B+ ._8[b68 [$_]- b_[y_B]]

6 Y

• ; • ;Y

MaB 6 c, a M(YY dY Ma6] B}+ [_,sb_,_ p)B]+ (wC,6 _ [wY6 .¢8;-y . . - .6 by ;8 •
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a + Ma_ _B 6 M_6 _B a
- dB6 M_O]; B b_ .B;6b_ - .(8;6 b_

- pa[N3B + M 3"Y byB];8 " 0 (5.4.52a)

dJNaB dJM o0 dJMaB
b + +

dt aB dt ;aB dt "Y + NaB (PabB b'yB ;B

+ bya _B - 2dY bYB} ÷ MaBJSY + Y

Y _ dY
+ 2P.o b_B a;_B

Y MoB
+ W.a;B _ } - ;_

+ 2MaB [,Y _ dY } _ {MOB + poB dY 0 (51.4.52b)
;S .Y;a o;Y ;YB ;S_ } a "

It might be thought that in the principle itself, Eq. (5.4.41), and in the

equations of equilibrium, Eqs. (5.4.52) also, there exist additional terms

which depend on N3eand M3a. The requirement of symmetry of the Cauchy

stress tensor in the system (-):

- -y_
_rawO - 0 , (5.4.53)

can be transfer to the T-system in the following manner:
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Integration of Eq. (5.4.54) through the thickness of the shell and use of

the definitions, given by Eqs (5.4.8) and (5.4.9), yield, amongothers, the

following condition (for r m 3):

e3_a{N3_+ M36"_}b6 - 0 (5.4.55)

From this it is clear that the terms in the brackets of Eq. (5.4.55) must

be zero themselves without any connection to the permutation tensor. Study

of Eqs. (5.4.51) and (5.4.52) shows that substitution of Eq.(5.4.55) will

lead to the absence of Ne3 and Ma3from several terms (simplification).
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6. PLANAR CURVED BEAMS

6. I Introduction

Section 6 deals with the kinematic and the constitutive equations used

for the numerical analysis of planar curved beams.

Formulation of problems concerned with finite deformation of beams has

followed two different paths I01. Prescribing the beam by its deformed or

undeformed centroidal axis and cross section, one may introduce at the

outset beam stress resultants and their conjugate kinematic variables

characterizing displacement and rotation Qf the cross section. Together

with appropriate beam constitutive equations and a global balance law a

consistent theory is obtained. Alternatively, one may imbed beam theory in

the setting of deformable solid continua, in whlch, case one is concerned

with local constitutive equations connecting the stress tensor with a

strain tensor, which may in turn be expressed in terms of a combination of

undetermined beam kinematic variables and functions of the beam coordinates.

Momentum may then be balanced globally by integrating the local equations

over the deformed beam configuration. Both paths will be considered in

what follows.

A complete abinito rate theory for the second path can be obtained by

an appropriate plane stress approximation of the three-dimenslonal

formulations presented in sections two and three. This approach is

presented in Subsection 6.2. The rate form of the field equations for

finite strains and rotations of curved beams according to the first path,

can be obtained by a careful reduction of the shell theory, presented in

section five. A simplified version of this formulation is presented in

Subsection 6.3. Finally, three simple numerical examples are demonstrated

in Subsection 6.4.
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6.2 Plane Stress Approximation

The constitutive relation presented in section three will be-rephrased

here, in some different and compact form as follows

2Pi)[tk- C p g B ) - k (W,T) - 0 (6.2.1)a) if F - (t_ - C Po g Bk-- I o

i i Po i

where, sk, the Kirchhoff stress tensor, sk - mp ak, and the temperature T

i being the deviator of the Kirchhoff
are independent process variables, tk

P ii
stress. s:,K and W and Bk are internal parameters, then

v sr6 + oT6 ÷ - po g

Ei Pi

d k d k

(6.2.2)

with

i) ÷ C Po g i-i 1 (t - C Po g Bk Bk
tk " I ÷ 4 n_

(6.2.3)

P

(6.2.4)

b) if F - 0

(6.2.5)

(6.2.6)
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and

then
i Ei

dk = dk

(6.2.7)

(6.2.8)

with

Pi

dk = 0

P

vi - gs )dk 2 'It -cpo

te

i c Po g Sik) vkI 12(tk _ ti _ ak__22@}
8nk 2 aT

(6.2.9)

(6.2.10)

c) if F- 0 and aF V i aF _ Z 0
---V sk * -_
ask

(6.2.11)

or F<O (6.2.12)

then
Ei

= d k (6.2.13)

P

W= 0 (6.2.14)

• V i

• Sk = 0 (6.2.15)

By definition, a body is said to be in the state of plane stress

parallel to the u I , u2 plane when the stress components o13, a23, a33

vanish I02. It is well known in literature that the case of plane stress

isdifficult to handle theoretically. Even linear elasticity has to

treat this case in an approximate manner. To remove some of theoretical
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difficulties Durban and Baruch I03 introduced the notion of Generalized

Plane Stress, where instead of dealing with the quantities themselves, one

deals with their average values.

In our case the problem is even more difficult. The nonlinearities,

which the general three-dlmenslonal theory takes into account will also

cause a large change of the geometrical quantities In the u3 direction.

Clearly, someassumptions are needed to treat the case of plane stress as

a two-dlmenslonal case.

The first basic assumption Is that the thickness, h, of the plate

defined by the coordinates uI, u2 located in Its middle plane, is small

as compared with the other two dimensions. A second assumption is that the

external forces act in the uI u2 dlrectlons and are symmetrically

distributed with respect to the mlddle plane.

In a way slmilar to the procedure proposed by Durban and Baruch 103,

all the kinematic expressions are obtained by averaging the

three-dimensional expressions.

A basic assumption for the case of plane stress Is that the components

connected with the third direction are small and can be neglected. So, a

new concept of generalized stress tensor is Introduced

1
i ak h

_k " T (6.2.16)
o

It must be noted that in the linear theory of elasticity, where the

geometry does not change, the averaged and generalized stress tensors

coincide.

So the three-dimenslonal incremental elasto-viscoplastlc theory,

developed previously, can be adopted for two-dimension plane stress

probl eros.
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6.3 A Simplified Version of Thin Curved Beam Element

Fig. 6.1 - Reference Line of a Curved Beam

A portion of the reference line for a curved beam is shown on Fig.

6.1. The current arc length is denoted by s, while ¢ is the current angle

of inclination of the normar to the reference line, and p is the radius

of curvature.

The stress resultants acting on the beam cross section are the bending

moment M, the axial force N, and the shear force Q. The external load,

measured per unit of current length of the reference line, has the components

Ps and Pn in the direction of the unit vectors m s and en respectively.

If v and v denote the velocity components in the direction of the
s n

unit vectors _ and e respectively, the rate of extension is
s n

_v v
s n

d .... (6.3.1)
_s p

The rate of rotation, _, of a given section is given by

_v v

. _ = __n + _ (6.3.2)
_s p
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while the generalized rate of deformation associated wlth bending is

"r- _A-L vs
" _s " _s (--__vn * -_) (6.3.3)

The rate of equilibrium equations for this simplified verslon may be

put In the following form:

- Q _- _ + :_s+ d Ps" 0

_Q + N _ _¢
_)S _)_ + I_ + d Pn-- T_ Pn + -o (6.3.4)

@--_+ Q + dQ " 0

6.4 Numerical Examples

The quasi-linear nature of the velocity equillbrlum equations suggests

the adoptlon of an incremental approach to numerlcal integration with

respect to time. The availability of the field formulation provldes

assurance of the completeness of the incremental equations and allows the

use of any convenlent procedure for spatial Integratlon over the domain B.

In the present instance the choice has been made In favor of a simple first

order expansion In tlme for the construction of incremental solutions from

the results of finite element spatial integration of the governing

equat ions.

The procedure employed permits the rates of the field formulation to

be interpreted as increments in the numerical solution. This is

particularly convenient for the construction of incremental boundary

condition histories.

The capabilities of the presented models here-in have been evaluated

through three simple numerical examples. The first example demonstrates
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the capabllity of the plane stress approxlmatlon to predict deflections and

stresses in a beam loaded by a constant moment. Figure 6.2 illustrates the

beam and the flnlte element model. A quarter of the beam was dlvlded into

six elements in the vertical direction and into five elements in the

horizontal direction. The external moment was introduced by six parallel

forces acting on the section BC (see Fig. 6.2).

The value of the external moment is 3500 kg/cm, and the material of

the beam is CHR-17. The viscoplastic properties of the material were

obtained experimentally from uniaxial tests in Ref. 9. This properties

were collaborated into the present material model.

The variation of the deflection of point E as a function of time is

given in Fig. 6.3. It is important to point out the value of the large

deformation analysis. After ten minutes of the deformation is increased by

42% and at the same time there are important changes in the stress field

(see Fig. 6.4).

0'2 _.__

_4 -'--"

dS ---..

0'6 .

B

¢

c

c

c

Fig. 6.2

l

- The Beam Model

C

_F
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The next example consists of a straight simply supported beam, loaded

by a transverse concentrate force at the midspan. The beam is 25 inches

long, two inches high and one inch wide. The material is stainless steel

304 (Heat 9T2796). The material constants in sub section 6.2 were

correlated with the unlaxial tension experimental results given in Ref._O4.

The beam was subjected to a load of 2000 pounds at ;100°F, thls load was

then held constant for 312 hr., and then increased to 2250 pounds at

1400°F.

The primary purpose of this example is to compare the results,

obtained by the two previously discussed models. The first one is the

two-dimensional plane stress model, and the second one is the thin beam

model as derived from thin shell theory. Figure 6.5 presents results in

the form of load versus midspan deflection. The finite element model

consists of five simple plane stress elements (dashed line in Fig. 6.5) or

five sophisticated beam elements (full line in Fig. 6.5).

It can be seen (Fig. 6.5) that the results agree quite well up to the

312-hour hold period (points 3,4). During the hold period, the material

hardens and only the beam model can represent this behavior after the load

is further increased.

The last example presents an analysis of a circular arch. The

geometry of the shallow circular arch is shown on Fig. 6.6. The material

is once again the 304 stainless steel. The arch is fixed at both ends and

carries a concentrated load at the center. The elasto-viscoplastic

analysis of this arch is performed with the aid of a ten curved beam elment

model and with the inertia terms taken into account. The load P is assumed
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to be applied _n a quasi-statlc manner at t = O. The results of this

analysis are shown on Fig. 6.6, as the tlme-history of the midspan

displacement. The response of the arch starts with the instantaneous

elastic deformation at t = O, followed by slow deformation up to point B,

which can be considered as a limit point for the given value of the load P.

Beyond point B, the displacements increase rapidly towards point C. This

may suggest the existence of critical time for the prescribed load.

9o'-
i
J
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30i"/
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Fig. 6.3 - Point E Deflection
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7. FUTURE RESEARCH

As a consequence of these formulations, computational methods may be

constructed. The incremental differential theorems lead to various finite

difference methods. However, an integral theorem like the principle of the

rate of virtual power calls for implementation by a finite element method.

The discretization of the shell-like structure into finite elements and

their systematic insertion into the integral theorems may yield a system of

nodal motion differential equations. Numerous such applications are likely

to be derived where large thermomechanical loads are anticipated.

To develop geometrically nonlinear, doubly curved finite shell

elements the basic equations of nonlinear shell theories have to be

transferred into the finite element model. As these equations in general

are written in tensor notation their implementation into the finite element

matrix formulation requires considerable effort. The next effort will

concentrate how to derive the nonlinear element matrices directly from the

incrementally formulated nonlinear shell equations using a tensor-orlented

procedure. This enables the numerical realization of all structural

responses, e.g. the calculation of pre- and post-buckllng branches in

snap-through analysis and especially in bifurcation analysis, including the

detection of critical points and the consideration of geometric

imperfections. To avoid loss of accuracy care will be taken for a

realistic computation of the geometric properties as well as of the extmcaal

loads. Finally, the developed family of shell elements will be presented

and its efficiency will be demonstrated by some applications.
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